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Optimisation of the Allocation of
Functions in Vehicle Networks

Abstract

Modern vehicles have a complex distributed system of electronic control units
(ECUs), networked by several bus systems. There are up to 80 network nodes
in a single car. ECUs are becoming more complex, integrating an increasing
number of functions and software logic, and are connected to several hardware
components, like sensors and actuators.

In the early development phase, there is quite a big degree of freedom in the
allocation of these components to ECUs. Multiple objectives, like costs, quies-
cent current or busload, have to be considered for optimising the allocation, not
to mention the many constraints that have to be fulfilled, like memory, pin or
bandwidth availability.

Human experts usually have problems to effectively optimise multiple objec-
tives simultaneously. In order to recognise shortcomings in earlier phases of the
development, it is necessary to support the decision process.

In this work, the most important criteria are examined. Furthermore, a frame-
work is introduced supporting a multi-objective optimisation of the allocation.
A database model is introduced, allowing to store all relevant information. Sev-
eral heuristic optimisation algorithms are compared and improved for this spe-
cific problem. Finally, an application example is shown.





Optimierung der Zuordnung von
Funktionen in Fahrzeugnetzwerken

Kurzfassung

Moderne Fahrzeuge haben ein komplexes, verteiltes System von Steuer-
geräten, die mittels verschiedener Bussysteme miteinander vernetzt sind. Bis zu
80 Netzknoten befinden sich in einem einzelnen Fahrzeug. Die Steuergeräte wer-
den zunehmend komplexer und integrieren eine steigende Anzahl von Funktio-
nen und Software-Logik. Die Steuergeräte sind zudem verbunden mit verschie-
denen Hardware-Komponenten, wie Sensoren und Aktuatoren.

In frühen Entwicklungsphasen hat die Zuordnung dieser Komponenten zu
Steuergeräten noch viele Freiheitsgrade. Allerdings müssen viele Kriterien, wie
Kosten, Ruhestrom oder Buslast bei der Festlegung berücksichtigt werden. Zu-
dem müssen Nebenbedingungen wie Speicherplatz, Pins oder Bandbreite in
Betracht gezogen werden.

Menschen haben normalerweise Probleme, mehrere Kriterien gleichzeitig zu
optimieren. Um Unzulänglichkeiten in möglichst frühen Entwicklungsphasen
zu entdecken, ist es notwendig, den Entscheidungsprozess zu unterstützen.

In dieser Arbeit werden dazu die wichtigsten Kriterien untersucht. Weiterhin
wird ein Rahmenprogramm vorgestellt, welches eine Mehrkriterienoptimierung
der Zuordnung ermöglicht. Ein Datenmodell wird eingeführt, mit dessen Hilfe
alle relevanten Informationen gespeichert werden können. Verschiedene heuris-
tische Optimierungsverfahren werden verglichen und für dieses spezielle Opti-
mierungsproblem angepasst. Abschließend werden die Optimierungsverfahren
an einem realitätsnahen Anwendungsbeispiel getestet.
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Ich möchte mich bei den Studenten Christoph Neumann, Csanad Viragos,
Thomas Kollert, Stefan Federzoni, Bettina Bickel, Aron Csendes, Szilvia Papp
und Manuel Förster bedanken. Sie haben mich nicht nur bei der Implementie-
rung unterstützt, sondern mir auch viele neue Ideen und Anregungen gegeben.

Mein Dank gilt meinen Kollegen an der Universität und bei Audi für die an-
regenden Diskussionen und die Reviews meiner Arbeit. Namentlich erwähnen
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1. Description of the Task

In the past years, a rapid evolution of electronics in vehicles has taken place.
The public discusses this development controversially. It is a correct conclusion,
that a non-existing function cannot be defect. However, electronic features are
motivated by more than convenience.

The share of electronic failures in the break down statistics has been rising
over the past years. Although the share is increasing, the total number of elec-
tronic defects has been quite constant over the last years. It has to be considered
that the percentage of electronics in cars has been rising at the same time. It can
be concluded, that the dependability of vehicle electronics is much better than
its image.

The number of deadly accidents is declining world-wide, since active and pas-
sive safety systems like Antilock Brake System (ABS), Electronic Stability Program
(ESP), and airbag are assembled into cars in significant numbers. A further im-
provement is expected, once driver assistance systems like lane assist and adaptive
cruise control get more common.

It is interesting, that the fuel consumption of modern cars is declining, while
weight and power are rising. This is due to electronic injection and control
systems. Not to forget, that in the premium as well as in lower classes, nowadays
comfort functions are available that were reserved for the luxury class or even
not available at all a few years ago.

All these arguments explain, why the share of electronics in vehicles will
further increase. This is also supported by a study of Mercer Management
Consulting [MH01], which forecasts a share of 40 % of the production value of
a car in 2010 for electronics.

1.1. Motivation

Due to this manifold of electronic functions, modern vehicles have a complex
distributed system of Electronic Control Units (ECUs), networked by several dif-
ferent bus systems. There are up to 80 network nodes in a single car. ECUs
are becoming more complex, integrating an increasing number of functions and
software logic. They are connected to a huge amount of hardware components,
like sensors and actuators. All electronic components that are not inside the

3



1. Description of the Task

ECU are called sensors and actuators. Sensors (for example switches) normally
provide information to the ECU—actuators (for example motors or bulbs) nor-
mally execute commands from the ECU, see also [HKK04].

In early development phases, there is quite a big degree of freedom in the
allocation of these components to ECUs. Multiple objectives, like costs, energy
consumption, or busload have to be considered for optimising the allocation—
not to mention the many constraints that have to be fulfilled, like memory, pin,
or bandwidth availability.

Human experts usually have problems to effectively optimise multiple objec-
tives simultaneously, especially if the complexity of this allocation problem is
considered. In order to recognise shortcomings in earlier phases of the develop-
ment it is necessary to support the decision process.

Electronic architectures are often historically grown. Major changes in the
architecture cause a high risk for a new vehicle type series. The goal is a trade-
off between changing the whole system for directly saving money on the one
side, and changing as few as possible in comparison to an existing type series
on the other side.

A point aiming in the same direction is therefore the traceability of archi-
tectural decisions. An engineer might ask two years after a decision has been
passed, why the decision has been made in this way. It is often very difficult to
trace the reason.

The main reason for starting this work is the increasing functionality and
especially their interconnectivity in modern cars. How can an optimum for an
architecture be found if a huge number of new functions have to be brought in
series in shortening time periods. At the same time an optimum has to be found
in order to resist the increasing cost pressure.

1.2. Control Networks in Vehicles

In order to describe the task handled in this work, some basics of electronic
architectures in vehicles are explained in the following two sections.

Every modern vehicle has a complex network of interacting functions, com-
posed of so-called software and hardware components. The components are
assigned to ECUs. On an ECU, hardware components like network interfaces,
power electronics, and pins are located that allow the attachment of sensors
and actuators. Thus, hardware components can be located on ECUs (like power
electronics or pins) or outside ECUs like sensors and actuators, which are con-
nected to the pins with cables. Micro-controllers provide for example resources
like ROM/RAM and timers that allow the assignment of software components.
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Components c are referred to as an aggregation of software and hardware com-
ponents. This aggregation even allows to model hardware and software depen-
dent on each other as single components. It is a common case that actuators
need power electronics directly connected to an ECU e, and that device driver
software must be on the same ECU as well due to timing and/or safety require-
ments.

Nowadays, ECUs are developed using standardised software components. A
detailed overview about the Volkswagen standard software can be found in
[KWEP03]. Among other tasks, these standard software modules support an
abstraction of hardware, like network drivers [HIS03, LIN03] or I/O-drivers
[HIS04], subsumed called Hardware Abstraction Layer (HAL).

Modern architectures often have a central gateway and a number of differ-
ent networks connected to it. Notable network types are the Controller Area
Network (CAN, [CAN05]), Local Interconnect Network (LIN, [LIN03]), Media Ori-
ented System Transport (MOST, [MOS05]), and FlexRay [Fle05]. Additionally, the
architecture contains sub networks. The kind of network is depending on the
communication needs of the connected ECUs. Architectures and whole network
nodes are often reused in several type series’ [Köt05].

1.3. Middleware Concepts

Besides the abstraction of hardware described above, several research projects
have been carried out developing middleware concepts for the automotive do-
main. Examples are Architecture Electronique Embarquée (AEE, [AEE05]), Titus
[FRHW00], Dependable Embedded Components and Systems (DECOS, [DEC06]),
and Embedded Architecture and Software Technology—Embedded Electronic Architec-
ture (EAST-EEA, [ITE05, TEF+03]). This research resulted in the AUTOmotive
Systems ARchitecture (AUTOSAR, [AUT05]) project, which is still ongoing. Cur-
rently, more than 40 companies are members in AUTOSAR.

The common idea of the research projects is defining a middleware layer for
achieving an abstraction of the location of software components in a network.
Software components are not directly communicating with the network drivers
or the ECU-local interface drivers. Software components only know the inter-
face of the middleware. All signals needed for communication by the software
components are provided in the required form by configuration of the middle-
ware.

Figure 1.1 shows the flow of signals in an example. Two ECUs e are connected
to a network. Two signals are exchanged between application 1 and application
2 and application 3, respectively. One signal is submitted via network from
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e: ECU 1 e: ECU 2

c: Appl. 1 c: Appl. 2

Middleware

Hardware Abstraction Layer

c: Appl. 3

Middleware

Hardware Abstraction Layer

network

Figure 1.1.: Middleware between hardware abstraction and application

c: DI-FR-
CTRL

c: DI-RE-
CTRLc: DI-CTRL

c:
DI-SW

c: DI-
HLSW

... (16)               cable
               signal

Figure 1.2.: The function direction indication as an example for hardware independent
modelling

application 1 to application 3. A second signal is exchanged locally, without
invocation of the HAL, directly by the middleware between application 1 and 2.

The described concept of middleware adds a lot of flexibility to the location of
application software. Software components can be allocated more freely in the
network. In addition, applying this approach, hardware accessors can be moved
with little effort. The middleware cares for the transportation of the signals to
the respective software components via network.

The impact of re-allocating functions on the hardware is shown in an example:
In Fig. 1.2, the function direction indication can be seen without hardware. The
dotted lines are discrete cable connections and the solid lines symbolise signal
exchange between components. The grey boxes are hardware/hardware-near
software components (for convenience, in the following simply called hardware
components) and the bright box is a pure software component.

The Direction Indication Master Control (DI-CTRL) is the central component of
the function. It is responsible for the prioritisation and execution of the different

6



1.4. Objectives for the Allocation

e: SMSC e: BPMF e: BPMR
c: DI-
FR-

CTRL

c: DI-
RE-

CTRL

c: DI-
CTRL

c:
DI-SW

c: DI-
HLSW

CAN

Figure 1.3.: The function direction indication allocated to a network topology

functions. Only the component DI-CTRL has about ten sub functions like di-
rection indication, hazard-warning signal flasher, crash signal flasher, panic sig-
nal flasher, central door locking confirmation, trailer direction indication, theft
alarm light, and so on. All together, 18 different input signals are necessary in-
cluding direction indication switch (DI-SW), hazard lights switch (DI-HLSW), trailer
detected, and ignition on among others. On the output side, two additional con-
trol components are necessary for the front bulbs (DI-FR-CTRL) and the rear
bulbs (DI-FR-CTRL).

Hardware components include the path from the ECU-pin over the circuit
board, over the micro-controller-pin to the debouncing1 software. These hard-
ware components have to be re-allocated completely if necessary. Hardware
components, which are sensors, contain the way from the power electronics to
the ECU pin.

In Fig. 1.3, the same function is shown allocated to hardware. Three ECUs e
are connected to one CAN network. It can be seen that the direction indication
switch is read by the Switch Module Steering Column (SMSC). The switch signal
is transported via the network to the Body Power Module Front (BPMF) where
the direction indication control software DI-CTRL component is located. This
software component in turn is spreading the activation signals to the four bulbs
both locally and again via CAN network to the Body Power Module Rear (BPMR).

If, contrary to Fig. 1.3, all components are allocated to a single ECU, no signals
are exchanged at all. However, this results in higher costs for cables.

1.4. Objectives for the Allocation

Several objectives have to be considered during the allocation of functions:

1Debouncing is the removal of contact bounce that occurs due to the springy metal in switches
and relays.
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• The busload depends on the allocation of functions. In order to reduce the
overall busload, functions with a lot of need for communication can be
located on the same networks or even on the same ECUs. A simplified
example of a network architecture with a central gateway and two different
networks of the types Controller Area Network (CAN) can be seen in Fig. 1.4.

• In addition, different energy states have to be considered for reducing the
electrical energy consumption. In the state ignition off, several networked
functions are offered to the user, like for example radio or hazard lights.
Putting the components belonging to these functions onto different control
units requires the networks to be awake and consuming energy.2 The
energy consumption can be decreased by reducing the number of active
ECUs in some use cases. In the use case ignition off and no function active,
the energy consumption can be reduced by locating functions that have
to be always active, on a number of ECUs as small as possible. Examples
for components, which have to be active always, are receivers for the radio
key or theft protection.

• A very important factor are costs. Costs can be decreased by reducing
the length of cables in the wiring harness. Additionally, the behaviour of
customers has to be taken into consideration. There might be functions
that are not always ordered by the customer. The whole ECU might not
be installed or these functions can be deactivated. Another possibility is to
create variants of the ECU. The work done on the determination of ECU
variants is described in [HKKK05, HK05].

• Another objective to be considered is called supplier complexity. For each
component, a set of suppliers, which is able to develop and produce it, is
defined. For a given allocation and a given ECU, the supplier complexity is
defined by the minimum number of suppliers involved in the development
of the ECU. The problem of calculating this minimum number can be
transformed into a so-called set-covering problem. Algorithms for solving
this problem type are summarised in [CFT98]. As global value for the
objective supplier complexity, the sum of the supplier complexities of all
ECUs is applied.

Besides the mentioned objectives, many pure constraints are involved in the
search, like

• memory consumption,

2The front and rear hazard lights at least have to be synchronised from time to time.
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• pin consumption,

• timer consumption, and

• space consumption on the circuit board in the ECU.

In addition, constraints that are objectives at the same time have to be con-
sidered. An example is busload, which is limited to 100 % or less. Often, the
boundary is much lower, since free capacity has to be reserved for additional
functions that are introduced in a later phase of the product life cycle of the new
car. Since a lower busload gives more degrees of freedom for the development
of functions in the future, busload is still an objective, even if it is below the
boundary.

No general criteria can be determined, according to which the objectives and
constraints can be grouped or ordered. In Chap. 3, it is shown in detail, how the
different objectives can be handled, how quality ratings can be calculated, and
which data is necessary for them.

1.5. Allocation of Components

With the knowledge of how to map functions on different locations within the
electronic architecture, another question arises, which is not addressed by the
projects in Sect. 1.3: What is a good location to move the components onto while
considering the different objectives and constraints? During the development of
a new type series of a car, the system architects have to define which control
units communicate with each other and which functionality to put on which
control unit.

This problem type is subject to research in form of static task allocation for
several years. There exist one-pass greedy algorithms [BS98] that could be ap-
plied to the vehicle domain as long as the aspects were limited to CPU and
memory consumption. Some of these algorithms even solve global resource
problems such as the busload [THW95], but without consideration of whole
networks of bus systems with their routing problems.

It is important to notice that the allocation in this work is done in very early
phases of development, when no implementations are available. This is due to
the fact that most of the functions are developed together with the suppliers of
the according ECU after the allocation. There is recent work from Blickle, Te-
ich, and others [BTT98, SHT05] in the area of hardware and software co-design
addressing similar problems. The main focus of their work lies on real time
properties, communication issues, and task and bus schedules. They address
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the problem mainly in a later phase of the development process where imple-
mentation and/or detailed specifications of the functions are available. In this
work, the early development phase is addressed from the view of an OEM. In
the early phase, the available information is not sufficient for an exact determi-
nation of the system properties.

Nowadays, the allocation of the components is usually generated by senior
engineers and their expert knowledge, without any tool-support. In future,
after the allocation decision, tools like DaVinci [Vec05], INTECRIO [ETA05], or
TRESOS [3SO06] can be used for configuring the middleware. Code can be
generated, that performs the actual communication of a selected component,
adapting to the specific network(s) that are available on the chosen ECU.

During the allocation of components to ECUs, several solutions are compared
and assessed. Multiple objectives and constraints influence the allocation deci-
sion, as already explained in Sect. 1.4. Human experts often encounter problems
in effectively optimising multiple objectives simultaneously. Thus, shortcomings
are often recognised in a late construction phase, when the vehicles are already
being built. Therefore, it is necessary to support or even automate this decision
process.

Not every new vehicle series demands a total re-development of the whole
system architecture. Already the addition of some new functions is a very de-
manding task. Considering ten new functions for a new vehicle type series and
five possible locations for each, already 510 = 9, 765, 625 possibilities for the
allocation exist, although constraints reduce this number significantly.

Sometimes, components have to be modelled in a fine granularity depending
on the application. The reason could for example be the ability to model costs
and weight of single integrated circuits. So-called component units are introduced
in order to ensure both the possibility of modelling fine granular and the atomic
allocation. A component unit is always combining a number of components
that have to be allocated together to ECUs. In this work, it is always spoken of
components, if no differentiation is necessary.

More formal, every solution s can be defined as a set of q allocations a = {c
asg
→

e}, since any of the q components c has to be allocated to an ECU e. Therefore,
every solution is defined by s = {a1, a2, ..., aq}T. This is illustrated in Fig. 1.4.

The problem of function allocation has the specific property, that often a high
percentage of the possible solutions are infeasible due to tight constraints. A
formal problem description can be given as follows: The optimisation deals
with m objective functions and n constraints. A solution s is defined by a set of
q decision variables a. Without loss of generality, the problem can be written as

minimise f = { f1(s), f2(s), ..., fm(s)}T (1.1)
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s a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

e1

c5c4c3c2c1 c10c9c8c7c6

e5e3e2 e4

CAN 100 kbaud CAN 500 kbaud

gate-
way

Figure 1.4.: Example for a possible allocation set (solution s) of 10 components c to five
possible ECUs e in two networks

subjected to g = {g1(s), g2(s), ..., gn(s)}T ≤ {0, 0, ..., 0}T (1.2)

where s = {a1, a2, ..., aq}T and each a describes the assignment of one component
to an ECU. All constraints g are formulated as functions with a value less or
equal to zero if they are not violated. All solutions are feasible unless at least one
constraint in g is violated. All equality constraints h(s) = 0 can be transformed
into inequality constraints [Coe02] in order to fit in (1.2) via

|h(s)| − ε ≤ 0, (1.3)

where ε is a small tolerance.

1.6. Summary of the Task

Several tasks are handled within this work. They can be summarised as follows:

• Characterise objectives for the allocation and develop ways to calculate
them.

• Develop and compare strategies for a multi-objective optimisation of the
allocation of functions to control units. Constraint for all optimisation
algorithms is that they have to work with optimisation problems of realistic
size.

• Develop a database model including all data for evaluating the objectives
and applying the optimisation algorithm.
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• Implement a framework for verification of the developed strategies.

• Show an application example including results.

1.7. Outline

In this work, a review of related work is performed in Chap. 2. The allocation
criteria are examined in Chap. 3. Chapter 4 gives an overview on the archi-
tecture of the system used for performing all tests. Additionally, a realistic
application example in is provided Chap. 5. It is presented, how the introduced
type of problems can be solved using multi-objective optimisation algorithms in
Chap. 6. They are improved specifically for the problem of function allocation.
All optimisation algorithms have certain parameters to be adjusted. Approaches
for adjusting and finding good parameters are shown in Chap. 6 as well. Chap-
ter 7 explains, how the special problem of ECU variants can be handled. It is a
sub problem of the global optimisation of the function allocation. The work is
concluded in Chap. 8.
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In this chapter, related work is presented necessary for understanding the other
sections. First, several population based optimisation algorithms are presented
in Sect. 2.1. They are the basis for the optimisation in Chap. 6. Additionally, an
overview on modelling data structures is given in a depth as used in the further
context (see Sect. 2.2).

2.1. Population Based Optimisation Algorithms

Classical optimisation techniques focus on finding values for variables in order
to optimise according to a single objective. It is already outlined in Sect. 1.4
that there are several objectives to consider during the optimisation of func-
tion allocation in vehicle electronics. The classical approaches can be adopted
for Multi-Objective Optimisation Problems (MOOP) as well. Parameters can be
introduced giving an importance or weight to the different objectives. By this
transformation of multi-objective problems into single-objective problems, the
complexity of multi-objective optimisation can be avoided.

From a practical point of view, only one solution is needed for realisation.
However, how to set the weight parameters? Non-linear relationships between
the objectives are even more complicated to handle. Furthermore, it might be an
interesting information to choose between several solutions having advantages
in different objectives each. Modern optimisation strategies as described in this
section are able to handle multiple objectives at the same time and provide a set
of solutions as optimised result. Thus, no weight parameters are necessary and
the user can choose between several optimal solutions.

Heuristic optimisation is usually applied to problems with a range of possi-
ble solutions so big that an exhaustive search is not possible. Furthermore, they
are not bound to a special problem, but applicable to different problem classes.
Special forms of heuristic optimisation algorithms called population based optimi-
sation algorithms manage a population of solutions. Many of these algorithms
are suitable for multi-objective problems as well. Classical optimisation algo-
rithms, modified for MOOPs, usually find only one solution per optimisation
run, whereas population based algorithms can find a set of solutions within a
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single run. A more detailed motivation of the use of population based algo-
rithms for MOOPs, has been published by Deb in [Deb01].

Population based optimisation algorithms are characterised by a set of solu-
tions. This set of solutions is called population. Typical examples are evolutionary
algorithms and ant colony optimisation as introduced in the course of this section.

This section gives a brief introduction into basic terms and techniques that are
required to understand population based multi-objective optimisation strate-
gies. At first, the term Pareto front is explained. Additionally, an overview over
population-based optimisation algorithms is given. Several frequently studied
population based optimisation algorithms are reviewed. Current methods for
handling constraints and constraint violations are explained. Finally, a method
for benchmarking the quality of an optimisation algorithm is presented.

2.1.1. Pareto Optimality

If there is only one objective involved in the optimisation, normally, only one
solution exists that has an optimal quality rating. This solution is called an op-
timal solution for the given problem. Vector Evaluated Genetic Algorithm (VEGA)
has been described in [Sch85] for handling multiple objectives at the same time.
In VEGA, the population is sorted in sub-populations, one for each objective.
Subsequently, each sub-population is evaluated according to a single objective.
It is difficult to explore the entire Pareto front when applying this method.

Later methods apply the concept of Pareto optimality. Multi-objective optimi-
sation results in multiple solutions being superior in different objectives each.
This results in a set of optimal solutions. This set of best solutions is called the
Pareto front1 according to Vilfredo Pareto. The Pareto front can be determined in
accordance to the quality ratings of the objectives and the concept of dominance
according to Deb [Deb01]:

Definition 1 A solution s1 is said to dominate d(s1, s2) the other solution s2, if both
conditions are true:

• The solution s1 is no worse than s2 in all objectives f

∀ f (s1) ≤ f (s2) (2.1)

• The solution s1 is strictly better than s2 in at least one objective

∃ f (s1) < f (s2) (2.2)
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f1 [minimise]

f2 [minimise]

Pareto front

Figure 2.1.: A population of several solutions and its Pareto front for two objectives and
their objective estimation functions f1 and f2

The Pareto front is the set of solutions that are non-dominated by any others at
all, as is shown in Fig. 2.1. More information can be found in [Deb01].

The human expert running the optimisation system is primarily provided
with the Pareto front. The task of selecting the one single best solution that is
implemented finally can only partially be supported automatically. Some aggre-
gations of the quality ratings could be applied. Plain aggregation models are for
example linear combinations like weighted sum method, goal programming, or
goal attainment [Coe00]. This way, the user can be supported in selecting one
single best solution.

Nevertheless, considering that most objectives are hardly correlated and that
the formalisation or quantification of importance is usually not possible—
aggregation models do not give proper results. Anyway, there is little neces-
sity for aggregation, because human experts, provided with a Pareto front, are
superior in selecting the single best solution for their problem in short time.

2.1.2. Evolutionary Algorithms

Evolutionary Algorithms (EA, [Hol92]) are typical representatives of population
based algorithms. Potential solutions are represented as individuals. The indi-
viduals are encoded as genomes. A whole set of solutions/individuals is called
population. Imitating nature’s breeding, EAs apply operations like mutation and
crossover of genomes or pairs of genomes in order to evolve the population.

1The Pareto front is sometimes called Pareto trade-off frontier, Pareto set, or non-dominated set.
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Since the cardinality of populations usually should remain constant or within
some boundaries, a selection of the genomes is applied based on the numeric
fitness of a genome. For multiple objectives, this fitness is a vector.

Seeding of the population refers to the creation of solutions from scratch. Seed-
ing can be done initially or iterative. Initial seeding means that after the initiali-
sation phase, new solutions are created exclusively by applying evolutionary al-
gorithms on existing individuals or genomes. Whereas iterative seeding means
that even after the initialisation phase the algorithm may decide to create new
individuals from scratch.

Standard operations for EAs are mutation and crossover. The mutation opera-
tion prevents the population from becoming too similar and helps to avoid local
minima. The crossover is a recombination of usually two individuals. Several
examples are the one-point, two-point, uniform, and half-uniform crossover.

Three basic classes of evolutionary algorithms are named Genetic Algorithms
(GA, [Gol89]), Genetic Programming (GP, [Koz92]) and Evolutionary Strategy (ES,
[Rec94]). They differ for example in their used genotype and in their applied
genetic operation.

Finally, an interrupt condition (or often called stop criterion) has to be defined.
The easiest one could be to stop the optimisation after a given number of gen-
erations. A better one could be to check the improvement of the solution in the
last generation and stop the optimisation if the improvement was less than a
certain percentage. This could fail if local optima are found. Better interrupt
conditions for example combine both approaches.

Sorted Pareto Evolutionary Algorithm

It has been decided to use and improve (see Sect. 6.1) the Strength Pareto Evo-
lutionary Algorithm 2 (SPEA2, [ZLT01]), a state of the art Multi-Objective Evolu-
tionary Algorithm (MOEA). According to Zitzler et al. [ZLT01], SPEA2 has ad-
vantages especially for optimisation problems with a high number of objectives
in comparison to other MOEAs like the Non-dominated Sorting Genetic Algorithm
(NSGA-II, [DAPM00]) or the Niched Pareto Genetic Algorithm (NPGA, [HNG94]).
It is also applied by Schlichter et al. [SHT05] in a similar optimisation prob-
lem. In SPEA2, only a fixed number of individuals in the population survive in
each generation due to the applied selection operations. The complete SPEA2

algorithm is shown in Alg. 1. One attribute of SPEA2 is that it manages an
archive At of fixed size N for the storage of parent generation individuals. As
first step, an initial population P0 is generated (seeding). For example, it can be
filled with random solutions.

A sophisticated fitness calculation algorithm is applied for reducing the size
of the archive together with the new generation after the application of evolu-
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Algorithm 1: Complete SPEA2 Algorithm

t := 0;1

Generate the initial population, P0, and archive, A0;2

while t < T do3

Calculate fitness F = R + D of all individuals in Pt ∪ At;4

At+1 := non-dominated individuals in Pt ∪ At;5

if |At+1| ≤ N then6

Fill At+1 from dominated solutions in Pt ∪ At ordered by the fitness;7

else8

Remove solution returned from truncation operator Torig (see Alg. 2)9

from At+1 until |At+1| = N;
end10

Fill the mating pool Pt by binary tournament selection with replacement11

on At+1;
Apply evolutionary operators to mating pool and place results in Pt+1;12

t := t + 1;13

end14

return At;15

tionary operations (see Alg. 1, line 4). The calculation algorithm for the SPEA2-
fitness F exploits information about domination and density:

• First, the strength value S is assigned to each solution. The strength is the
number of other solutions that are dominated.

• Second, the raw fitness value R is assigned to each solution. The raw fitness
value for each solution is sum of the strength values of all dominating
solutions. The domination relation d(s1, s2) is according to Def. 1.

• A so-called density D is applied as a second criterion. The density value is
only crucial, if two solutions are equal in means of the raw fitness value.
In order to determine D of all solutions in Pt ∪ At, the distance D′ to the
k-nearest neighbour is determined for each solution. The value of k is
determined with k =

√

|Pt ∪ At|. Thus, the density can be determined
with D = 1

D′k+2 .

• The assigned SPEA2-fitness F = R + D is only applicable, if the archive
size is bigger than the number of non-dominated individuals in the
archive.

Figure 2.2 shows values for S,R, and D on the left hand side and F on the right
hand side.
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Figure 2.2.: Example for the determination of the SPEA2-fitness F (right hand figure)
based on the strength value S, the raw fitness R, and the density D

If the archive size N is bigger than the non-dominated set, the archive is filled
from Pt ∪ At, ordered by the fitness value (see Alg. 1, line 7).

If the archive size N is smaller than the non-dominated set, a truncation op-
erator Torig returns individuals to be removed from this non-dominated set. It
is defined as follows: Remove the individual that has the minimum distance to
its neighbour. If several individuals exist with the same minimum distance, the
tie is broken by considering the second smallest distances and so forth. This
operator as shown in Alg. 2 helps to prevent boundary solutions to be removed
and to keep diversity. The method getSolsWithNearestNeighbour(sT, k, A) returns
solutions with the k-nearest neighbour to the member of A from a solution set
sT. For example, if k = 2, the solutions with the closest distance to the second-
nearest neighbour in A from sT are returned. Figure 2.3 shows the order of
solutions removed from a Pareto front using Alg. 2.

Algorithm 2: Torig: Original SPEA2 Truncation Operation
Input: An archive A with non-dominated solutions s
sT := A; // initialize truncation candidates1

k := 1; // Distance to the k-nearest neighbour2

while |sT| 6= 1 do3

sT := getSolsWithNearestNeighbour(sT, k, A);4

k := k + 1;5

end6

return sT; // exactly one solution to be truncated7
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f1 [minimise]

f2 [minimise]

Pareto front 1

2

3

Figure 2.3.: Order of solution removal in a Pareto front using the truncation operator
Torig

A mating pool Pt (see Alg. 1, line 11) is filled by binary tournament selection
from At, before evolutionary operators are applied to it. Finally, the results
are placed in Pt+1. Binary tournament selection means that random pairs are
chosen from the archive. These are compared according to the SPEA2-fitness.
The better one is placed in the mating pool until its target size is reached.

2.1.3. Ant Colony Optimisation

Another representative of population based optimisation algorithms is Swarm
Intelligence (SI, [BDT99, KE01]). One type of SI is called Ant Colony Optimisation
(ACO, [CDM91]). The algorithm is based on the behaviour of real world ant:
Real world ants are marking the way they are walking with pheromones. These
pheromones evaporate after time. The following ants decide which way to go
with a probability depending on the strength of the pheromone trail. If an ant
has found food and walks back, it amplifies the pheromone trail on its way to
the nest. Following ants prefer this path more and more. After a short while,
all ants walk the shortest way to the food with a high probability.

ACO algorithms use the analogy of ants finding food. They have originally
been developed for the Travelling Salesman Problem (TSP, [SD99]). The optimum
solution for the TSP is an order of cities in which a travelling salesman should
visit each city once, covering a minimum distance. The decision, which city
to visit next is influenced by randomising based on pheromones and heuristic
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information. The probability pij that a city j in the neighbourhood of city i is
chosen as next city is given with

pij =
τα

ijη
β
ij

∑j∈N τα
ijη

β
ij

. (2.3)

The variable τij is the so-called pheromone value, ηij the heuristic information
and N the set of all neighbour cities of i. The pheromone concentration is higher
on shorter (or better) paths, because ants travel on them more frequently. In the
case of the TSP, the heuristic information ηij is the inverse distance between the
cities. Thus, a small distance increases the probability for choosing the according
city. For the sake of diversification, the probability for less-pheromone paths
should be above zero. If the probability is above zero, the algorithm is able to
find new solutions and not only to affirm known ones. The parameters α and β

weight the influence of pheromones and heuristic information.
An important point of the algorithm is the update of the pheromones. In one

method, pheromone values are changed after each single movement of the ants.
In this case, the value of τij is reduced first. This part is called evaporation and
simulates the natural evaporation of pheromone trails. In the second step, the
pheromone value is increased. The new pheromone value at the time t + 1 is
determined with

τij(t + 1) = ρτij(t) + ∆τij(t, t + 1), (2.4)

where the value of ρ is a measure for the evaporation or persistence of the
pheromones. The increment ∆τij(t, t + 1) is either a constant or a value depend-
ing on the distance between the cities i and j.

In a further method, pheromones are updated after completion of a whole
tour. In this case, all edges within each tour are increased indirect proportional
to the length of the whole tour.

The standard algorithms explained before are not able to handle multiple
objectives and constraints. In the remainder of this section, these two prob-
lems are addressed. The previous ant colony optimisation algorithms refer to
single objective optimisation problems. In several studies, ACO is applied to
multi-objective optimisation problems as well. An overview can be found in
[GMCH04]. A common approach is to establish one ant colony for each objec-
tive. The colonies are sorted according to the importance of the corresponding
objectives. This approach has already been applied to the vehicle routing prob-
lem [GTA99] and the TSP [MM99].

In many use cases, it is not possible to sort the objectives. In [IMM01], an
approach is introduced avoiding this problem. Like in the previous approaches
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[GTA99, MM99], there is one colony for each objective. Each colony has its own
pheromone information and the ants in a colony only use this information for
the update. In order to provide indirect communication between the colonies,
all solutions are collected in a global pool. The non-dominated solutions from
this pool update the pheromone values. There are two different ways to do this.
Either, ants only update the pheromone values of their own colony (update-by-
origin) or the solutions are sorted according to an arbitrary objective (update-by-
region). The second method allows guiding the colonies explicitly in different
regions of the search space.

Several ACO algorithms are able to consider constraints, like in [MH04, BP96].
The applied constraint handling techniques are similar to the method of ensur-
ing feasibility as shown in Sect. 2.1.4. In this approach, the feasibility is guar-
anteed by the update operators. The main drawback is that for any additional
objective, an adaptation of the ACO operators is mandatory for ensuring the
feasibility. In Chap. 6, a method will be shown avoiding this disadvantage. A
rating of the different methods and a selection of the applied ACO algorithms
will be performed in Sect. 6.2.

2.1.4. Constraint Handling Techniques

Most population-based algorithms have in common, that they do not directly
support constraints. As already outlined in Sect. 1.4, several constraints have
to be considered during the optimisation like memory or space consumption.
Several constraint handling techniques that can be used for population based
optimisation algorithms are compared in [Coe02] and [KAW02]. The relevant
types are:

• Discard infeasible solutions

• Ensure feasibility

• Repair infeasible solutions

• Penalty approach

• Modifying the dominance relation

The following requirements, that constraint handling techniques have to fulfil,
can be identified:

• Extendibility. It must be easy to extend the optimisation with additional
objectives. Therefore, it is not wished that the constraint handling tech-
nique requires support in the form of additional algorithms.
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• Parametrisation. Each parameter eventually has to be adapted to the spe-
cific optimisation problem. Therefore, only constraint handling techniques
are considered that do not involve additional parameters, like for example
weight parameters.

• Performance. A good performance for all kinds of optimisation problems,
especially including problems with tight constraints, is desired.

Discard Infeasible Solutions

A very easy constraint handling technique is discarding infeasible solutions.
For example, every operation where an infeasible solution could occur can be
repeated until a feasible solution is found [HS96]. This technique is only ap-
plicable, if few infeasible solutions are in the problem space. Otherwise, even
after a number of generations not a single valid solution might be found at all.
This approach does not consider infeasible regions at all. Thus, a movement of
solutions through infeasible regions is not possible. Concluding, the extendibil-
ity and parametrisation of this approach is very good, but the performance is
poor.

Ensure Feasibility of Solutions

A further constraint handling technique is ensuring feasibility. This can be done
by representation [PK94] or by operators [Kow97]. In order to ensure feasibility
by representation, the solution has to be represented in a way so that infeasi-
ble solutions are not possible. The main drawback of this method is the poor
extendibility. For each type of problem and even for each new objective, that
representation and/or the operators have to be adopted.

Repair Infeasible Solutions

Besides ensuring the feasibility of solutions, infeasible solutions could be re-
paired before they are further considered. For optimisation problems with tight
constraints, this might be as difficult as the whole optimisation. Thus, per-
formance is quite poor. Furthermore, these approaches are problem depen-
dent. Nevertheless, successful applications have been shown for example in
[TS95, XMT97, ZT99].
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Penalty Approach

A very common method is the penalty approach. It has been presented by
Goldberg in [Gol89]. The basic approach is to redefine the fitness values of a
solution s as defined in (1.1):

minimise f′ = f + P(s), (2.5)

where P(s) is a penalty dependent on the current solution s. It is assumed that
P(s) = 0 if s is feasible, since these solutions are not penalised.

One easy method is penalising solutions for just being infeasible. Since no
further information about the infeasibility is used, the performance is quite poor.

It is furthermore possible to penalise the amount of infeasibility of solutions.
One approach is to penalise the number of violated constraints [MQ98]. This
approach yields in a mid range performance and has the advantage that it needs
no parameters.

There exist approaches for determining the severity of the constraint violation.
For single objective optimisation problems, P(s) could be determined with

P(s) = ∑
∀g∈g

pgg(s), (2.6)

where pg is a penalty weight parameter necessary for each constraint g.
For multi-objective optimisation problem, several more complex strategies for
adding a penalty [Coe02, OY05] exist, for example static [BK94], dynamic [JH94],
annealing [MA94] or adaptive [HAB97] penalties. The performance of all this
approaches seems to be quite good, if the needed parameters for this approach
are set correctly. Due to the necessity for parameters, the requirement para-
metrisation is not met.

Modifying the Dominance Relation

Another approach is modifying the dominance relation. The basic idea is to
redefine the optimisation of f so that the constraints g are represented as ad-
ditional objectives. Thus, all population based optimisation algorithms can be
applied without modification to the resulting new optimisation problem.

In [Deb00], Deb proposed a method that can be formulated as a modified
domination operator. The domination operator of Deb dDeb(s1, s2) is re-defined
according to Def. 2.

Definition 2 A solution s1 is said to Deb-dominate dDeb(s1, s2) the other solution s2,
if any of the following conditions is true:
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• Solutions s1 and s2 are feasible and s1 dominates (d(s1, s2) according to Def. 1)
s2.

• s1 is feasible and s2 not.

• s1 and s2 are both infeasible, but s1 has a smaller amount of constraint violation.

The problem with this method is again, that the amount of constraint violation
has to be compared. This requires the introduction of weight parameters if many
constraints are applied. Otherwise, the comparison prefers solutions violating
constraints with certain constraint severity value ranges.

A more recent method has been proposed by Oyama et al. in [OSF05]. Again,
the dominance operator is redefined:

Definition 3 A solution s1 is said to Oyama-dominate dOyama(s1, s2) the other solu-
tion s2, if any of the following conditions is true:

• Solutions s1 and s2 are both feasible and s1 dominates (d(s1, s2) according to
Def. 1) s2.

• s1 is feasible and s2 not.

• s1 and s2 are both infeasible, but s1 dominates (dconstr(s1, s2) according to Def. 4)
s2 in the constraint space.

Definition 4 A solution s1 is said to dominate dconstr(s1, s2) the other solution s2 in
the constraint space, if both conditions are true:

• The solution s1 is no worse than s2 in all constraints

∀G(s1) ≤ G(s2) (2.7)

• The solution s1 is strictly better than s2 in at least one constraint.

∃G(s1) < G(s2) (2.8)

where G(s) = max(0, g(s)).

This method does not need any parameters since the concept of dominance is
directly transferred into the constraint space. Unfortunately, this new promising
approach has only been tested with one example until now [OSF05].

Some of the described constraint handling techniques are compared and a
new one is developed in Sect. 6.
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2.1.5. Benchmarking Multi-Objective Optimisation Algorithms

Several multi-objective optimisation algorithms are compared in the course of
this work. The following criteria have been identified for benchmarking the
quality of a multi-objective population based optimisation algorithm:

• The quality of the gathered solutions regarding all relevant objectives

• The number of feasible solutions provided to the user

• The diversity of the solutions provided to the user

• The number of necessary objective evaluations and the execution time

There are several approaches in order to benchmark algorithms according to
these criteria. A first quality indicator is just counting the number of feasible
solutions IN. No other criterion from the list can be assessed with this metric.
Therefore, it is only recommended to use this metric together with others.

A further indicator is the generational distance IG according to [VL00]:

IG =

√

∑
n
i=1 d2

i

n
, (2.9)

where n is the number of solutions and di is the Euclidian distance (in objec-
tive space) between each solution s and the nearest member of the overall non-
dominated set. The complexity of the problems is so high, that exhaustive search
(see Sect. 5.3.2) cannot always determine the overall non-dominated set. Instead,
the non-dominated set of all solutions tested during all runs can be aggregated.
This generational distance indicator cannot assess an algorithm according to
number of feasible solutions and diversity. Like IN, the usage is only recom-
mended together with other indicators.

Quite a big number of quality indicators have been compared in [ZTL+03]. It
has been proved that the hypervolume indicator IH according to [ZT99] is among
the best ones known currently. In order to determine a value for the hypervol-
ume indicator, maximum values fmax must be known for each objective. From
each solution, a multi-dimensional volume can be determined against these
maximum values. The hypervolume indicator is the inverse of this volume. An
example for the calculation of the hypervolume indicator in the 2-dimensional
case can be seen in Fig. 2.4. Three solutions build rectangles. The area (in the
2-dimensional case, the hypervolume is an area) of the union of those three
rectangles is called I ′H. The hypervolume indicator can be determined with
IH = f1,max · f2,max − I′H.
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f1[minimise]

I′H

f1,max

IH

f2,maxf2[minimise]

Figure 2.4.: Example for the calculation of the hypervolume indicator

The hypervolume indicator covers all criteria claimed at the beginning of this
section. Therefore, it is used in the course of this work, especially in Chap. 6. It
is important to notice that only feasible solutions are considered.

2.2. Database Models

For the description of the optimisation input—a description of the electronic
system in a vehicle—database models are used. Semantic database models rep-
resent requirements in the studied problem field from the view of data. They
present the structure and the relation between the data in a formal way (for
example in a diagram).

The most commonly used specialisation of a database model is the Entity-
Relationship (ER) model, originally proposed by Chen in [Che76]. A part of
the model is the ER diagram, representing the data objects. Entity relationship
diagrams can be easily understood even by non-experts in database design.

The advantage of ER models is that SQL2 code can be generated for building
the database structure. Entities are translated into tables—relations into foreign
key constraints. SQL is a language for querying and manipulating data. The
current standard—SQL:1999—is described more in detail in [GP99].

The notation used in all database models shown in this work expresses entities
with rectangles. The name of the entity is at the top of each rectangle in a grey
box and its attributes below. Each attribute has tags for Primary Keys (PK),
Foreign Keys (FK) and Unique (U) constraints, if applicable.

The application of a unique constraint prevents duplicate values in a column.
If a unique constraint is applied on more than one column, no two equal com-

2Simple Query Language (SQL)

26



2.2. Database Models

component

PK component_id

FK2 optional_variant_of_component_id
FK1 componenttype_id

name
description

supplier_for_component_relation

PK,FK1 supplier_id
PK,FK2 component_id

is_forbidding

supplier

PK supplier_id

_infos_suppressed

Figure 2.5.: Entities component and supplier and their relations

binations of these columns are allowed anymore. The primary key is the identi-
fier of values within a relation. A primary key is unique and not allowed being
empty. Only primary keys can be referenced by foreign key constraints. A for-
eign key constraint on a column ensures that the value in that column is found
in the primary key of another table. Foreign keys ensure consistency between
the data in different tables and simplify the implementation of the application
using the database.

Figure 2.5 shows the entities component and supplier.3 The entity sup-
plier for component relation is actually a relation. It expresses an n-to-m relation
between supplier and component. Therefore, it is tagged with the suffix relation.
An n-to-m relation is a relation where each entry of entity a is possibly related
to several entries of entity b and vice versa. In SQL, this is expressed in an
additional table. This is the reason for symbolising it with a rectangle here.

In the remainder of this work, database models are used to show the data that
is necessary as input for the optimisation. The database model is designed as
generic as possible in order to be sustainable for future requirements. There-
fore, there are quite complex semantic relationships between the entities. Thus,
a human expert is required to input data. For the application in productive en-
vironments, it is recommended to provide a graphical user interface, supporting
the users.

3The relation between component and supplier is described more in detail in Sect. 3.8
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3. Criteria for the Allocation of
Components

There are multiple criteria to be considered at the same time during the allo-
cation of components. This chapter discusses these criteria. Only the ones are
considered that can be influenced by the allocation of functions. Criteria that
imply a change of the network topology are neglected. For example, reduc-
tion of busload is an objective. Nevertheless, the cost effect of replacing CAN
networks by LIN networks—if the busload is sufficient low—is not considered.
Due to the fixed network topology and hardware, additional constraints have to
be considered like memory consumption or maximum busload in a network.

In the course of this chapter, all optimisation objectives/constraints are de-
rived (Sect. 3.1). Common attributes of all optimisation objectives are explained
in Sect. 3.2. After that, the different objectives/constraints resources (Sect. 3.3),
weight (Sect. 3.4), costs (Sect. 3.5), busload (Sect. 3.6), electrical energy consump-
tion (Sect. 3.7), and supplier complexity (Sect. 3.8) are presented. Database mod-
els are provided explaining the information necessary for the calculation of qual-
ity ratings for the objectives and related constraints.

3.1. Derivation of the Optimisation Criteria and
Objectives

Most car manufacturers are commercial companies. As all commercial compa-
nies, their main goal is to maximise the profit. This can be done by reducing
the expenses and/or by increasing the revenue. The revenue can be increased by
improving the customer benefit. This leads to a bigger number of sold cars and a
higher prize that can be realised.

There are several possibilities to increase the profit. In the following, only
criteria are considered that can be influenced by the allocation of components:
In order to reduce the expenses, the production costs and the warranty charges
can be reduced. In order to increase the customer benefit, dependability and
fuel consumption have been identified as relevant. The upper part of Fig. 3.1
summarises a number of direct criteria.
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Figure 3.1.: Derivation of the Objectives

In the lower part of the figure, several objectives are derived. The difference
between criteria and objectives is that objectives can be evaluated. It is explained
in the course of this chapter, how this can be done for each objective.

It is important to note that it is not claimed to provide a complete list of
all objectives. Important objectives from the view of one car manufacturer are
identified and examined. It is possible to extend the method with further objec-
tives, since population based optimisation algorithms allow the easy integration
of additional objectives. Constraints are developed and explained within this
section as well.

It is additionally important to note that an ideal optimisation would only
have the criterion profit. Since network topology and hardware are assumed
fixed, additional objectives like busload have to be taken into consideration.
The mentioned ideal optimisation would also require for example an estimation
of the revenue effect of weight savings.

3.2. Requirements for Optimisation
Objectives/Constraints

This section explains requirements that have to be fulfilled by all implementa-
tions of objectives and constraints.
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It is recommended to combine objectives and their according constraints
within single implementations of objective estimations giving back only one
value and a flag indicating if the solution is valid according to the objective

A common feature of all objective/constraint implementations the avoidance
of plateaus during optimisation. Sometimes, the benefit of two solutions equals
according to one objective. Still, it can be determined that one of the two solu-
tions is nearer to an even bigger benefit. Plateaus are areas where the solution
changes but the quality rating is constant although this difference can be de-
termined. All constraints are examples for that fact. If a constraint is violated,
the solution has no benefit at all—it is infeasible and therefore not realisable.
Anyway, in many cases a severity of constraint violation can be determined.
This difference should manifest in the quality ratings. If plateaus occur, the op-
timisation algorithm does not know in which direction allocations have to be
changed in order to improve the solution. Thus, the optimisation process gets
more difficult.

A requirement derived from the above one is the following: All quality ratings
of an objective with constraint violation must be worse than all quality ratings
without constraint violation. This is because the optimisation relies on values
indicating how strong the violation is. If this is not possible, separated objective
estimation instances have to be provided. It is shown in Sect. 4.2.5 how objective
estimation objects can describe objectives and/or constraints at the same time.
It is shown in Chap. 6, how these requirements comply with all optimisation
and constraint handling techniques.

Furthermore, for each objective, it must be possible to calculate estimations
for the extreme values, their quality ratings can return. This requirement is
derived from Sect. 2.1.5 where the calculation of the hypervolume indicator re-
quires these values.

As units for the calculation of quality ratings for the objectives/constraints,
often, input values like for example energy consumption have to be provided.
As far as possible, it is recommended to use the Le Système international d’ unités
[BIP98]. For example, instead of the unit Horse Power (HP), Kilo Watt (kW)
should be used.

3.3. Resources

The goal of this work is to optimise the component allocation. The underlying
hardware is not changed by the optimisation and is seen as given. This leads
to constraints. Micro-controllers have a limited amount of memory, the size
of the circuit board is limited, and the number of available I/O-pins might be
restricted [BTT98]. All these constraints are very similar.

33



3. Criteria for the Allocation of Components

component

PK component_id

FK2 optional_variant_of_component_id
FK1 componenttype_id

name
description

component_consumes_resource_relation

PK,FK3 consumptiontype_id
PK,FK1 component_id
PK,FK2 resource_id

consumed_units

consumption_type

PK consumptiontype_id

U1 name
description

resource

PK resource_id

FK1 unittype_id
FK2 resourcetype_id

name
is_reusable
description

resource_type

PK resourcetype_id

name
description

provider_provides_resource_relation

PK,FK2 provider_id
PK,FK1 resource_id

max_units
min_units

ecu

PK ecu_id

FK1 optional_variant_of_ecu_id
name
description
max_number_of_variants
cost_incrementor

ecu_consumes_resource_relation

PK,FK3 ecu_id
PK,FK2 resource_id
PK,FK1 consumptiontype_id

consumed_units

consumedunit_influences_objectivetype_relation

PK,FK3 provider_id
PK,FK2 resource_id
PK,FK1 objectivetype_id

influence

Figure 3.2.: Database model of ECUs, components, resources, and their relations

In order to be able to describe these constraints in a unique way and without
to change the database model frequently, the concept of resources is applied.
The basic concept of resources is as follows: resources are provided by ECUs
and consumed by the ECUs themselves or components (see Fig. 3.2).

ECUs or components (see p. 5) consume resources with a number of con-
sumed units. The attribute min units in provider provides resource relation indicates
the minimum number of units that are considered as consumed—although the
according ecu and component are consuming less. The attribute max units con-
straints the resource consumption.

Resources are not only used as stand-alone constraints. They are also nec-
essary as input for the calculation of the quality ratings for many of the other
objectives. In the remainder of this chapter, several other objectives are apply-
ing this concept as well. The relation consumption type is important for distin-
guishing between different types of consumption by these other objectives. The
resource type is necessary for grouping types of resources.
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There are two kinds of resources: not-reusable resources and reusable re-
sources. They are defined by the attribute is reusable in the relation resource.
Not-reusable resources are consumed by summing consumption of each re-
source. An example is the usage of RAM/ROM. Reusable resources are not
consumed in addition. The maximum single consume is assumed instead. For
example, the stack on a micro-controller can be a reusable resource, if no pre-
emption is allowed between the tasks.

Beside the application of resources within objective implementations, they
are applied as stand-alone constraints. Examples for resources as stand-alone
constraints are:

• RAM/ROM consumption

• CPU-load consumption

• Consumption of timers

• I/O-pin consumption

• Circuit board consumption (Components consume space on the ECU’s
circuit board)

• Cable consumption

• Temperature ranges in the vehicle and temperature critical components

Until now, only non-redundant components are considered. Another interest-
ing use case of resources is redundant functionality. In the future, it might make
sense implementing two components that are executing the same function for
redundancy and safety purposes. It makes no sense to locate these components
on the same ECU due to redundancy. This can be achieved by creating an ab-
stract resource that mirrors functionality. Both components consume one unit
of this resource and all relevant ECUs provide it limiting the consume by the
components (min units = 0; max units = 1).

As quality rating, a sum of the severity of constraint violations is determined.
For example, a ratio or difference between consumed resource and provided
amount is applied. It makes often sense to use several concrete objective im-
plementations for different resource type. Different resource types mostly also
have different units and are therefore not comparable. For example, the units
of the resource types circuit board consumption and memory consumption cannot
be compared (m2 and B). Thus, different objective instances returning separate
quality ratings are instantiated.
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3.4. Weight

The weight of cars is growing in the last years. The weight of the vehicle elec-
tronics is a significant portion of the vehicle weight. According to [MH01],
electronics cause 5 % or 67 kg of the weight of an average mid range vehicle.
Reducing the weight has several positive effects. It directly reduces the fuel
consumption of the car. Additionally, the power impression and dynamics of
the vehicle is improved.

The weight of the electronics can be reduced by using new materials with the
same attributes but lower weight. This is a process independent from and not
influenceable by the allocation of functions to ECUs. How can the allocation of
functions influence the objective weight?

Two issues can be identified: The weight of the wiring harness and the num-
ber of necessary ECUs. The quality rating can be calculated by returning the
weight of the resulting wiring harness and the weight of the necessary ECUs.

3.4.1. Weight of the Electronic Control Units

Resources allow modelling the necessary data for the estimation of the weight
of ECUs including their allocated components. Each ECU consumes a certain
amount of the resource weight itself for micro-controller, other electronic com-
ponents, boxing, and so on. The weight of the boxing is depending on the
installation location, for example, since mostly boxings have more weight in
wet areas.

The weight can be reduced by finding a subset of ECUs executing all compo-
nents with a low weight. The weight of a specific ECU has not to be added to
the quality rating if

• no component is allocated to the ECU

• and no signal1 has to be routed by the ECU.

The second criterion ensures that gateway ECUs, which are necessary for rout-
ing signals, are considered.

3.4.2. Weight of the Wiring Harness

In addition to the weight of ECUs, the overall weight is influenced by cable
lengths resulting from the function allocation. It is influenced by the dis-
tance between the ECUs and the according sensors/actuators. This is mod-
elled in the database using resources according to Sect. 3.3. For each cable

1For the definition of signal, see Sect. 3.6.
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resource, an influence of the objective weight is specified (see Fig. 3.2, consume-
dunit influences objectivetype relation). In this case, this influence means the weight
per meter of the specified cable. For example, in the allocated function direc-
tion indication in Fig. 1.3, cables from the front direction indication bulbs to the
BPMF and from the rear direction indication bulbs to the BPMR have to be laid.

Routing of cables through the available cable ducts is an optimisation in it-
self. Methods for automated wiring harness optimisation have been published
already several years ago [PCCL94, KS94]. This optimisation is so complex in
itself that nowadays, human experts often use virtual reality in order to de-
termine an optimum [SRHR02]. At any time, one of these automated routing
algorithms and the according data can be included in order to determine the
cable lengths between the ECU and the according sensors/actuators in a more
precise way.

The disadvantage of all of these algorithms is that the performance is very
poor due to the amount of data and the complexity of the sub-optimisation
problem.

3.4.3. Determination of the Cable Lengths

In order to improve the performance of the calculation of the resulting cable
lengths and the quality rating depending on the function allocation, a simplifi-
cation of the real wiring harness is made in this work. Cars at the Volkswagen
group normally have a wiring harness in the form of an H (see Fig. 3.4, right).
This means, that the main cable ducts go on the left and right side from the
rear to the front and that there is exactly one crossing for instance under the
dashboard or the rear seats.

The H-form is due to production requirements. A second crossing would not
allow assembling the wiring harness into the car in one piece. With this infor-
mation, a simplified (and fast computable) model of the wiring harness is devel-
oped that can be used for the calculation of the quality rating. Figure 3.3 shows
a database model for modelling the location of components (component instance)
and ECUs (network node) and defining the according wiring harness.

The parameters distance from rear dr, distance between the left and the right
part (breadth) db and distance from bottom dh define the size and form of the sim-
plified wiring harness. The wiring harness is shown in Fig. 3.4.

A location has to be defined for all components that are sensors and/or actua-
tors and for all network nodes. The location is defined by the three dimensional
location denoted in {x, y, z}. Another parameter (harness fraction) with the val-
ues l, r, or c for left, right, or crossing has to be provided, defining to which
of the three cable ducts it is connected. The presented database model allows
only one sensors/actuator location per component instance. If more than one
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Figure 3.3.: Database model of locations and the wiring harness

sensors/actuators are connected to a technical unit, it has to be modelled as
separate components. In order to calculate the distance between the location
of an actuator and its according allocated network node connecting to it, the
following lengths are added:

1. The direct (shortest) way from the 3-dimensional location of the network
node to the wiring harness (H)

2. A way from this point to the same point for the actuator location (which
is specified with the according component)

3. The direct way from there to the component

If both actuator and network node are on the same connected cable duct and
the same harness fraction, there is no need to consider the whole way back
to the cable duct. Figure 3.5 shows (2-dimensional) the distance between the
component direction-indication switch and the ECU BPMR for all distances in
steps 1-3 (l1, . . . ,l3, see example in Fig. 1.3).

3.5. Costs

A very important objective during the development of vehicles is the minimisa-
tion of costs. All other objectives influence the profit indirectly as well. In this
work, only hardware costs for electronics are considered. Two different costs
can directly be influenced by the allocation of components. First, an algorithm
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Figure 3.4.: Wiring harness (grey) in the co-ordinate system from the side (left) and top
(right)
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Figure 3.5.: Distance between component direction indication switch (DI-SW) and
BPMR

for the estimation of the average ECU costs and second, for the determination
of the costs of the cables between ECUs and sensors/actuators is explained. In
this work, the symbol c is used for costs.

3.5.1. Average ECU Costs

The allocation of functions influences the average ECU costs ce. Some functions
are representing extra equipment. If these functions are put on an ECU to-
gether with standard equipment, the according ECU has to be built in every
vehicle. This is the case although the extra equipment is not ordered. Thus,
the extra equipment is still causing costs in this car. In the described case, only
the ECU-internal fractions of the components cause internal component costs cint

c .
Sensors/actuators (and their according external component costs cext

c ) are only as-
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sembled in cars with the order rate po,c of the according feature(s). The external
fractions are consumed with a different consumption type.

The average ECU costs ce per car are determined by predicting the installation
rate pi,e of each ECU. The installation rate equals the ratio of vehicles in which
a specific ECU has actually to be installed depending on the allocated compo-
nents. The resulting average costs caused by an ECU e can be determined with

ce = cbas
e pi,e + ∑

∀c|c
asg
→e

(

cint
c pi,e + cext

c po,c

)

, (3.1)

where cbas
e are the basic ECU costs caused by resource consumption

(ecu consumes resource, see Fig. 3.2) of the ECU itself. The total average ECU
costs of a vehicle are determined by summing all average ECU costs ce in the
vehicle. ECUs are not considered at all, if no components are assigned and/or
no signals have to be routed (see Sect. 3.6).

The prediction of the installation rate of ECUs pi,e, depending on the allocated
components, is the crucial point in this calculation. It is not sufficient to deter-
mine the installation rates of the allocated components. Additionally, the depen-
dencies between the components must be to known. For example, two features
with an order rate of 40 % each—both allocated on the same ECU—could imply
an installation rate in a range between 40 % (if they are always ordered together)
and 80 % (if they cannot be ordered together at all) of the according ECU. In
order to express these dependencies, the introduction of a conditional probabil-
ity value could help. This value would have to be provided for each possible
combination of components. The number of possible combinations is very high
already for a low number of components.

A better way is providing the necessary interdependencies indirectly in form
of a list of produced cars. More precisely, it is proposed to use an aggregated
prediction of each single manufactured car in the future. Such a prediction can
be determined from currently produced cars. Some newly available features
are considered in the prediction as well. It is additionally considered that the
order rate of some features might differ for future cars. The predictions are
aggregated to so-called vehicle partitions v, since only features are regarded that
have impact on the currently optimised set of components. Figure 3.6 shows the
according fraction of the database model.

The relation feature allows defining features. Each feature can be used in
several vehicle types (see relation feature to vehicletype relation). The relation com-
ponentinstance to feature relation allows assigning a set of features to each compo-
nent instance. If one of these features is ordered, the component instance has to be
assembled in the car and the allocated ECU is installed. If necessary, the order
rate po,c of the components can be determined from this data as well.
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Figure 3.6.: Database model of predictions of customer orders

This is shown in an example: All components of the feature keyless entry cKES
and the components of the feature rain/light sensor cRLS are allocated on the same
ECU. Table 3.1 shows four different vehicle partitions v with their order forecasts
(number of ordered cars). For instance, 450,000 cars are ordered with the fea-
tures rain light sensor and without keyless entry. These orders result in an order
rate po,cKES= 45 % and po,cRLS= 70 % for the considered 1,000,000 cars. The instal-
lation rate pi,e of the according ECU can be determined with 90 %, since only
10 % of the cars need none of the two features.

3.5.2. Costs for Cables between ECUs and Sensors/Actuators

The lengths of the cables are determined according to Sect. 3.4.3. Similar to the
objective weight, for each cable resource, an influence on the objective costs is
specified (see Fig. 3.2, consumedunit influences objectivetype relation). In this case,
the influence means the costs per meter of the specified cable.

This section shows how the average costs of the electronic system can be
determined focussed on re-allocable components. Costs of the ECUs themselves
and the wiring harness arise depending on the allocation of components. The
resulting average costs can be used as quality rating without any transformation.
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Table 3.1.: Example for the determination of order rates po,c and installation rates pi,e

vehicle partition order forecast component

cKES cRLS

v1 100,000 2 2

v2 200,000 4 2

v3 450,000 2 4

v4 250,000 4 4

po,c 45 % 70 %

pi,e|{cKES, cRLS}
asg
→ e 90 %

In a further step, additional cost saving potential can be realised by creating
variants of ECUs. These differ in their hardware. The question, how to configure
the variants, is an optimisation on its own and is explained in detail in Chap. 7.

3.6. Busload

A number of years ago, almost no bus systems were installed in vehicles. Due
to the rising number of networked functions communicating with each other, a
large amount of signals has to be exchanged. For each signal, a discrete signal
cable was used in the past. Many signals can be transmitted over single cables
using bus systems.

This section explains the objective busload. A modern electronic architec-
ture consists of several different networks. This is because different functions
from domains like infotainment, body electronics, or power train have dif-
ferent requirements in relation to communication safety and amount of data.
Figure 3.7 shows a database model allowing modelling this so-called network
topology. Each network node can be connected to several networks and different
network types. The networks can be configured by setting the flag is time triggered,
baud rate and protocol overhead factor. How to configure these parameters for dif-
ferent networks is explained in the course of this section.

In order to exchange the function relevant information, signal transmission
takes place between components. Components are reusable in different vehicle
type series. Therefore, signals are not statically bound to components. In fact,
signals are bound to interfaces2. Figure 3.8 shows a partition of the database

2It is distinguished between producer interfaces (Output) and consumer interfaces (Input)
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Figure 3.7.: Database model of the network topology

model used for modelling the functional network. It allows to model compo-
nent instances. Therefore, components only have signal interfaces for input and
output communication. Each interface is defined by the interface type. The com-
munication between components can only be modelled between concrete com-
ponent instances. The interface types of the two communication partners have
to be identically. Each communication between component instances—called
signal—always has exactly one sender and an arbitrary number of receivers.

The estimation of the busload of a network considers signal communication
between component instances that are not located on the same ECUs. In the
presented model, signals are modelled independently from the used bus system.
The common about CAN, LIN, FlexRay and MOST is the fact that signals are
specified by a bit-size. To calculate a representation of the busload, additional
parameters are necessary.

Functions have different requirements on signal transmission. For each
producedsignal to consumer relation, values for maximum delivery time td and mini-
mum update time tu are specified. It is shown how to determine if the maximum
delivery times are kept in Sect. 3.6.1. Section 3.6.2 shows how the best networks
for routing signals to the receivers is determined. The influence of signals on
the busload is explained in Sect. 3.6.3. The maximum delivery times are also
important for the determination of the resulting busload, especially for time-
triggered networks. Finally, in Sect. 3.6.4 the determination of a quality rating is
presented.

3.6.1. Maximum Delivery Time of a Signal

The worst-case delivery time of a signal must be lower than the specified maxi-
mum delivery time td in order to ensure the specified function. In relation to the
function allocation, only the network relevant delivery times have to be consid-
ered. The time from sensor to micro-controller to the network controller cannot
be influenced by the allocation. In this section, only times are incorporated that
are maximum reachable if the according bus systems are configured ideally.
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Figure 3.8.: Database model of components, component instances, interfaces, and sig-
nals

With the maximum transfer rate (baud rate) r, the maximum transmission delay tD,N
can be calculated for one network N with

tD,N = tprop + ttrans + tprio. (3.2)

The variables are defined as follows:

• The propagation time tprop is the time needed for the propagation of signals
from the application on sender side to the application on receiver side.
Times for network controller tcontr, transceiver ttc and network route itself
tnet have to be summed up. The wave transmission speed in cable is about
2 · 108 m

s . For 100 m cable this results in tnet ≈ 0.5 ns and can be neglected
here. On high speed CAN, common values are tcontr ≈ 250 ns and ttc ≈
50 ns. Similarly, for low speed CAN, tprop is only in the range of ¯s. All
networks have to be defined so that tprop is somehow smaller than the time
amount needed for the transmission of one bit. Thus, for all networks by
definition, tprop does not affect tD,N significantly, since it is much smaller
than ttrans.
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• The transmission time ttrans is the time needed for the transmission of the
whole signal from the sender to the receiver. It is depending on the pro-
tocol overhead and can depend on the length of the signal bsig (see Fig. 3.8,
bitvector length).

• The prioritisation time tprio is the time until the transmission of the message
can be started.

For the calculation of the maximum transmission delays, some values have to

be rounded up. The symbol
rb
â is defined as rounding up its argument a to the

next multiple of the rounding base rb. For example
8

1̂2 = 16.
The delay times tD,N for CAN, FlexRay, MOST and LIN can be calculated as

follows:3

• For CAN, ttrans can be calculated with frame length divided by the maxi-
mum transfer rate r. According to [Law00], there exist two different ver-
sions of CAN with 11- and 29-bit identifiers. The frame length without data
bf is 47 bit and 67 bit, respectively. Additionally, stuff bits have to be con-
sidered. According to [NHN03], the worst-case number of stuff bits bs for
11- and 29-bit identifier is

bs =
{34, 54} bit+

8
b̂sig −1 bit

4
, (3.3)

where bsig is the length of the signal. The worst-case protocol overhead boh =
bf + bs can be calculated with 47 bit + 25 bit = 72 bit and 67 bit + 30 bit =
97 bit for 11- and 29-bit identifier. The resulting ttrans can be calculated
with

ttrans =
boh+

8
b̂sig

r
. (3.4)

Important CAN messages can be sent with a high priority. Even for the
CAN message with the highest priority, a message with a lower priority
will finish sending. The maximum frame length is 64 bit. Thus, tprio ≥
boh+64 bit

r . Concluding, tD,CAN can be calculated with

tD,CAN−11 ≈ ttrans + tprio <

72 bit+
8
b̂sig

r
+

136 bit
r

=
208 bit+

8
b̂sig

r
(3.5)

3tprop can be neglected and is not discussed anymore.
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and

tD,CAN−29 ≈ ttrans + tprio <

97 bit+
8
b̂sig

r
+

161 bit
r

=
258 bit+

8
b̂sig

r
. (3.6)

These values can only be guaranteed for the message with the highest
priority. Thus, CAN is not real time capable.

• According to [LIN03], LIN (2.0) has a protocol header of 34 bit. In the
response space, additional 10 bit have to be considered for the checksum.
The length of the carried data can only be specified Byte per Byte with a
maximum of 8 Byte. At the beginning and end of each Byte, a start and
stop bit has to be transmitted. The frequency of the oscillator has low
requirements on accuracy. In comparison to the nominal time, this results
in 40 % additional time for the transmission of the whole signal. The value
ttrans can be calculated with

ttrans = 1.4
44 bit + 2(

8
b̂sig /8)+

8
b̂sig

r
. (3.7)

For time-triggered networks, the prioritisation time tprio is smaller or equal
to the cycle time tcyc

4 of the frame where they are included. With 44 bit +

2(
8
b̂sig /8) < 60 bit, tD,LIN can be calculated with

tD,LIN ≈ ttrans + tprio < 1.4
60 bit+

8
b̂sig

r
+ tcyc. (3.8)

For tcyc, it is not necessary to consider the factor 1.4, since the master,
which is triggering all signal transmissions, has tighter oscillator accuracy
requirements.

• On MOST, the control channel is used for data exchange comparable to
the other networks. According to [MOS05], for a common value of the
sample frequency fs of fs = 44.1 kHz, 2670 control messages per second
can be transmitted. One frame has 512 bit and includes 2 Byte of one con-
trol messages. A complete control message has a length of 32 Byte. So,
ttrans = 16·512 bit

r with r = fs · 512 bit5. Only every third control message
can be received by a MOST controller. Therefore, even for the message

4It is explained in Sect. 3.6.3 how to estimate tcyc.
5This value r = 44.1 kHz · 512 bit = 22580 kbit/s is neglecting inter-message delays and stuff

bits, since they are not defined in [MOS05]. The physical value is about r = 24.8 Mbit/s.
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Table 3.2.: Comparison of the transmission time relevant parameters of different in-car
networks for an 8 bit signal and optimal design

network r ttrans tprio cap. of tD,N
kbit

s ms ms real time ms

Low-Speed CAN, 11-bit-id 100 0.8 1.36 2 2.16

High-Speed CAN, 29-bit-id 500 0.21 0.322 2 0.532

LIN 19.2 4.96 10 4 14.96

MOST 22580 0.363 1.088 2 1.451

FlexRay 10000 0.0326 10 4 10.0326

with the highest priority, in the worst case, another three messages have
to be awaited. Concluding, tD,MOST can be calculated with

tD,MOST ≈ ttrans + tprio = ttrans + 3 ttrans = 4
16 · 512 bit

r
. (3.9)

• According to [Fle05], the overhead of the FlexRay protocol is boh = 86 bit
at best. Normally, the length of slots in the static segment is fixed. A com-
monly used value is 24 Byte. The dynamic segment is not considered since
signals that have a bounded delivery time should always be transmitted
via the static segment. Each transmitted Byte is started with a Byte-start-
sequence of 2 Byte. This results in a minimum of ttrans ≤

86 bit+24·10 bit
r . For

FlexRay, the netto transfer rate r is used since the value is highly dependent
on the bus configuration of the bus. In reality, a value of r = 10 Mbit/s
can be reached when installing two channels. Similarly to LIN, tprio is de-
pending on the cycle time of the according frame. Concluding, tD,FR can
be calculated with

tD,FR ≈ ttrans + tprio ≤
86 bit + 24 · 10 bit

r
+ tcyc. (3.10)

Table 3.2 shows the maximum delay times for an 8-bit signal if the networks
are designed for fast transmission of critical messages. For time-triggered net-
works, a cycle time of tcyc = 10 ms is used.

In order to check whether all delay times comply with the constraints (all max-
imum delivery times td), all maximum transmission delays tD on the whole way
through the network have to be summed up and compared with the constraints.
At each gateway, an additional processing time tproc is needed for transmitting the
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Figure 3.9.: Examples for network topologies with one network (left), topologies in tree
form (mid), and graph form (right)

signal to the other network. This time is consumed for looking into the routing
table, finding the correct target(s), and copying the needed data into the send
buffer. A connection between two FlexRay networks is a special case, since it
is possible to synchronise two different FlexRay networks. The resulting delay
tD,FR,n for n succeeding FlexRay networks is

tD,FR,n ≈ ttrans + tprio ≤
86 bit + 24 · 10 bit

r
+ tcyc,LCM + (n − 1)tproc, (3.11)

where tcyc,LCM is the Lowest Common Multiple (LCM) of the cycle times of the
submitting frames on the transmission path.

3.6.2. Allocation of Signals to Networks

As a next step, for each network, the set of signals sigN,tr has to be determined
that have to be transported. If only one network is considered, this can be done
as follows: If any of the receivers of a signal is not allocated on the same ECU
as the sender, the signal has to be transmitted over the network.

Another step of difficulty is a network in the form of a tree. This is the most
common case for current vehicle architectures in the Volkswagen group. A tree
means that there is only one possible way for the signals from the senders to the
receivers. For each sender-receiver-relation the networks can be determined in
this way.

There exist network topologies, which are not in a tree but in a graph form.
Figure 3.9 shows examples of the three types of networks. Different ways to
route signals from a sender to a receiver can be thought of. In this work, the
Shortest Path First (SPF, [Dij59]) algorithm is applied in order to determine the
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necessary networks for all signals. This algorithm solves the single-source short-
est path problem for a directed graph with non-negative edge weights. There-
fore, each vertex (here equivalent to network nodes) in the graph keeps a list of
the shortest known routes to all other vertices. This list is initialised with the
direct neighbours and updated iterative until the shortest path from the starting
point to the ending point is known. Since a tree is a special case of a graph, this
algorithm is also applicable for networks in the form of a tree.

3.6.3. Influence of Signals on the Busload

There are different influences of signals on the busload. As explained
at the beginning of this section, two parameters are known for signals.
For each produced signal to consumer relation, maximum delivery time td and mini-
mum update time tu can be specified.

If the update time tu is quite small in comparison to the maximum delivery
time td, the signal has to be transmitted always after a time of tu, independent
from the network (tcyc = tu). If the maximum delivery time tD is very small,
it has to be differentiated between time-triggered and non-time-triggered net-
works, since the influence of a signal on the busload is different for these two
cases:

• For non-time-triggered networks (n-tt-N), the maximum transmission time
cannot be influenced by adjusting tcyc (see (3.6)). A signal with a large tu
is potentially transmitted very rarely, almost not influencing the busload
although the maximum delivery time is quite small.

• This is different for time-triggered networks (tt-N). The value tcyc directly
influences td (see (3.10)). It is necessary that

∑
∀N

∈route

tcyc < td − ∑
∀gateways
∈route

tproc − ∑
∀n−tt−N
∈route

tD,N − ∑
∀tt−N
∈route

ttrans (3.12)

in order to fulfil the timing constraints. The sum of the cycle times tcyc
of all networks on the route has to be smaller than the maximum deliv-
ery time td decreased by all processing times tproc of the gateways on the
route, by the maximum transmission delays tD,N on the route, and by all
transmission times ttrans. It is proposed to split up the cycle times on the
different time-triggered networks on the route proportionally to the trans-
mission rate r. If one signal has several receivers with different td, this can
sometimes be used to relax the timing requirements for some networks.
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In difference to the calculation of the worst-case delay times, here the signals
are considered to be mapped to message frames in a way optimal for low bus-
load consumption. This means, for each signal it is assumed that other signals
can be found, forming a message with a maximum possible data length in order
to save proportional overhead. Overhead is only considered proportionally for
each transmitted signal. Thus, for each network N, the net busload lN can be
estimated with

lN =
1
r ∑
∀sig∈sigN,tr

pohbsig

tcyc
. (3.13)

The protocol overhead factor poh is the ratio of a gross message in comparison to
the length of the user data. It is calculated in the case of optimal design. That
means, that for example for CAN it is assumed that each message has 64 bit of
user data in this optimal case.

For the different networks, the protocol overhead factor can be calculated with:

• CAN has a worst-case protocol overhead of boh = 72/97 bit for networks
with 11/29-bit identifiers. The according poh’s can be calculated with
poh,CAN−11 = 72+64

64 = 2.125 and poh,CAN−29 = 97+64
64 ≈ 2.52.

• LIN has an overhead of boh = 44 bit. Additionally, a factor of 1.4 (see
Sect. 3.6.1) has to be considered. Totally, the protocol overhead factor can
be calculated with poh,LIN = 1.444+64

64 ≈ 2.35.

• MOST uses the control channel for signal transmission. A number of 16 bit
of the 512 bit of a message are used for transmission of control messages.
According to [MOS05], only 62 out of 64 control messages can be used for
user data. Each control message has an overhead of 14 Byte in comparison
to 18 Byte user data. Concluding, poh,MOST = 512

16
64
62

32
18 ≈ 58.72.

• FlexRay has an overhead of boh = 86 bit. The maximum frame length is
255 Byte. Often, the maximum frame length is not used. A common value
is 24 Byte. With that value, the protocol overhead factor can be calculated
with poh,FR = 86+24·10

24·10 ≈ 1.36.

Table 3.3 compares the net busload influence of an 8 bit signal transmitted
over exactly one network without regarding gateways.

3.6.4. Estimation of a Quality Rating for Busload

This section explains how to calculate a quality rating for busload qbusload. Ar-
chitectures claim to ensure extensibility for future features not known at design
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Table 3.3.: Comparison of the net busload influence of an 8 bit signal with tu = 25 ms
and td = 20 ms transmitted only over one network

network r ttrans tcyc lN
kbit

s ms ms %

Low-Speed CAN, 11-bit-id 100 0.8 25 0.68

High-Speed CAN, 29-bit-id 500 0.21 25 0.16128

LIN 19.2 4.96 20.04 4.88

MOST 22580 0.363 25 0.0832

FlexRay 10000 0.0326 24.9674 0.00436

time. Therefore, the real maximum value for the busload lmax
N (maximum load)

is much lower than 100 %. Additionally, for non-time-triggered networks some
bandwidth has to be reserved for safety purposes and in order to allow time
critical messages getting access to the bus relatively fast. A basic load is caused
by signals that are not modelled. It can be set with the parameter lbas

N .
One way to handle the busload on different networks is having separate ob-

jective instances for each. The returned quality rating equals the busload on
each network. This could add quite a number of objectives to the optimisation
problem depending on the number of networks. In order to improve the perfor-
mance, an aggregation model is developed. An aggregated quality rating has
the following requirements:

• If the busload lN is far away from the maximum busload lmax
N − lbas

N , addi-
tional busload should be weighted weaker.

• Near to the maximum busload, the weight should be higher, since it can
be considered more important.

• For the busload lN = lmax
N − lbas

N , the value qN,busload shall exactly equal
1. If this is known, the number of constraint violations can be added to
the quality rating. This guarantees that a quality rating for a constraint
violating solution is always worse than for a valid one.

• No weighting parameter for each network N is necessary.

In order to fulfil these requirements, it is proposed to calculate a quality rating
for all aggregated networks N with

qbusload = ∑
∀N

qN,busload + number of constraint violations (3.14)
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qN,busload =







w



 ln
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N −lbas

N





−1
w − 1 if lN < lmax

N − lbas
N

lN

lmax
N − lbas

N
else

, (3.15)

with w =]1, ∞[ for globally adjusting the relaxation of the busload quality rating
for low busloads. With w & 1, qN,busload represents the busload in comparison
to the constraint value (lN < lmax

N − lbas
N ). For bigger values of w, low busload

values are considered less important. Figure 3.10 shows qN,busload for different
values of w and lmax

N − lbas
N .

The compliance with the maximum delivery times should be considered in a
different objective. All violations of the timing constraint could for example just
be summed up.

3.7. Electrical Energy Consumption

This section deals with the allocation objective electrical energy consumption. An
explanation is given on how to estimate the allocation quality according to en-
ergy consumption in different states of the vehicle.

The wish to reduce the energy consumption of a car has several reasons. On
the one hand, the size of the generator can be reduced if less power is consumed.
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On the other hand, the size of the battery can be reduced. In both cases, costs
as well as weight can be reduced. Another point is that operating a generator
increases the fuel consumption of the car, since it consumes power from the
engine.

Since all networks and ECUs are normally active if the engine is running, the
power consumption of the functions in this use case cannot be influenced so
much by the allocation of components on ECUs. In order to reduce this power
consumption, the function itself has to be reduced in its power consumption.

However, if the engine is off and especially if the ignition is off as well, the
energy consumption is highly dependent on the allocation. This energy con-
sumption is very critical, since the capacity of the battery and the energy con-
sumption of the whole vehicle limits the time of availability of the functions. For
comfort functions like radio, a limited time of availability might be acceptable.
For safety relevant functions like parking light or hazard lights, it is not.

In the state ignition off and no backlashes active, the power consumption is highly
dependent on the allocation. Several functions that have to be active all the time
can be grouped together on single ECUs in order to reduce power consump-
tion. For example, features like radio remote controlled central locking or anti-theft
protection require sensor components to be active all the time. Some functions
are activated by the user, like for example hazard lights. They often require some
of the networks to be active.6 This causes a high amount of energy consump-
tion, since the network transceivers of all other ECUs have to be active at the
same time. An active network transceiver often means that the whole ECU is
active and consuming power. This can be avoided by adding so-called backup
networks to ECUs enabling an active network transceiver without keeping the
whole ECU awake.

3.7.1. Consideration of Number of Active ECUs

In the early development phase, the specification of the electronic system is
quite vague. In this phase, a quite easy calculable possibility for estimating the
allocation quality is to count the number of ECUs with at least one function that
has to be active all the time. The disadvantage is that different use cases like
warning light cannot be considered at all with this approach. In addition, the
quality of an allocation can only be estimated very inaccurate.

6The front and rear hazard lights at least have to be synchronised from time to time.
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Figure 3.11.: Database model of power functions

3.7.2. Consideration of Different Use Cases

A more precise way for the prediction of power consumption is to estimate
different use cases. It is proposed to define a set of so-called power relevant
functions (power function). Again, a database model is provided in Fig. 3.11. Each
power relevant function is defined by a set of components and a set of signals
that have to be transmitted during execution of the function. To go back to the
example direction indication (see Fig. 1.2 and Fig. 1.3), besides the components,
also the signal used for synchronisation belongs to the power relevant function
hazard lights.

Besides different intrinsic functions, additionally, ignition on, engine on, and
backlash on must be defined as power relevant functions. For these, all according
components and signals have to be modelled as well. Backlash is the mode,
where most functions are already deactivated, but some ECUs and functions
are still awake until they are finally shut down.

It is important to note that some functions keep whole networks awake if they
are activated. For example, for the hazard lights a network might be awake in
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order to synchronise the frequency and offset of the bulbs of front and rear.
More exact, the route from the sender of a signal to the specific receiver has to
be defined as belonging to a function. If such a signal is required by a power
relevant function, all networks on its route have to be active if the according
function is active. If gateways do not know the use case, the vehicle is currently
in, all routes of the signal to the other receivers’ networks might be activated as
well.

A further layer of abstraction is the definition of power use cases. Each power
use case U is defined by a user-defined set of power relevant functions. There are
an innumerable number of different use cases for a vehicle. Some of the most
important ones are:

• Ignition off – backlash off

• Ignition off – backlash on

• Ignition off – warning lights on

• Ignition off – radio on

• Ignition off – radio on – warning lights on

• Ignition on – motor off

• Ignition on – motor on

If the information about power relevant functions is available, it is very easy
to define new interesting combinations of them as new use cases.

The concrete consumption of power can be covered by the concept of re-
sources as explained in Sect. 3.3. It is distinguished between three types of power
consumption (consumption type, see Fig. 3.2):

• Operation power consumption, if at least one function or the ECU itself is
active

• Special power consumption, consumed for communication by the ECU if no
backup network7 implemented or in the backlash mode by the components

• Idle power consumption, always consumed, particularly important in the use
case ignition off – backlash off

7A backup network allows enabling the transceiver without activating the micro-controller.
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Table 3.4.: Power consumption pU of several use cases U for an ECU e1 and one com-
ponent c1

U pU

power equivalent in mA

all off 0.1 + 0.05 = 0.15

only network active (e1 has backup network) 10 + 0.05 = 10.05

only network active (e1 has no backup network) 100 + 0.05 = 100.05

c1 in backlash mode 100 + 5 = 15

c1 active 100 + 50 = 150

All three kinds of power consumption can be consumed by ECUs as well as
by components. Idle power consumption is the amount of power that is always
consumed, even if no function is activated at all. Nowadays, most ECUs are
connected directly to the battery and not switched by ignition. Thus, they are
consuming a little amount of idle power as well.

The special power consumption is different for ECUs and components. ECUs
consume the special power if the network has to be active and they have a
backup network. Components consume special power if they are in the backlash
mode. In this mode, the function can already be deactivated, but there are still
some tasks to complete. Therefore, only the reduced special power is consumed.

If at least one component on an ECU is in backlash mode or active, the whole
ECU has to be activated as well. Additionally, the ECU has to be activated if
the according network is necessary for transmission of signals and if no backup
network is available. Components only consume operation power if they are
activated for the specific use case.

For each use case, an exact value for power consumption pU can be determined
in the described way. Table 3.4 shows an example with an ECU e1 and one
component c1 with an operation power consumption of 100 mA and 50 mA, a
special power consumption of 10 mA and 5 mA, and an idle power consumption
of 0.1 mA and 0.05 mA. For several use cases U, the according power consump-
tion pU is determined in the right column.

For each use case, a single objective instance can be used, similarly to the
objective busload. This would lead to a high number of objectives. A further
possibility is weighting the objectives with a certain percentage

Additionally, constraints are involved: For each use case, a maximum power
consumption pmax

U can be defined. The maximum power consumption can be
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determined with

pmax
U =

CbatUbat

TU

, (3.16)

where Cbat is the net capacity of the battery, Ubat is the voltage and TU

(minimum activation time) is the required time of availability for a specific use
case U. The maximum power consumption of all use cases is defined by the
maximum current Imax and the voltage Ugen of the generator

pU < pmax
U = Ugen Imax. (3.17)

If constraints are involved, for practical application, a method similar to
Sect. 3.6.4 can be used:

qenergy = ∑
∀U

qU,energy + number of constraint violations (3.18)

and

qU,energy =







w
pU

pmax
U −1

w − 1 if pU < pmax
U

pU

pmax
U

else
(3.19)

Thus, the optimisation tends to allocate functions that need network com-
munication with low busload requirements although ignition is off onto same
networks. Additionally, it tends to move functions that are in communication
with each other on the same network nodes in order to safe power consumption
in the idle state.

3.8. Supplier Complexity

This section shows how a quality rating qsupplier for the so-called supplier com-
plexity can be determined. Supplier complexity is a measure for the number of
suppliers participating at the development of single ECUs.

The goal of Original Equipment Manufacturers (OEM) is to reduce the number
of suppliers developing and supplying an ECU because

• the coordination work between OEMs and suppliers is higher,

• the coordination work between the suppliers is higher,

• beside the interfaces of the ECU, additional interfaces within the ECU
between the components have to be specified in detail, and
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component

PK component_id

FK2 optional_variant_of_component_id
FK1 componenttype_id

name
description

supplier

PK supplier_id

_infos_suppressed

supplier_for_component_relation

PK,FK1 supplier_id
PK,FK2 component_id

is_forbidding

Figure 3.12.: Database model of suppliers for a component

• business models have to be developed ensuring the responsibility for er-
rors during the development.

Why not contract a single supplier for each ECU? Not all innovations are
made by the OEMs themselves. Suppliers often develop new functions on their
own or together with OEMs. This is the reason that often there is only a limited
number of suppliers being able to develop and manufacture a specific compo-
nent.

If several components are allocated on one ECU, it can happen that there
exists no single supplier being able to develop and produce an ECU with all
these components. The quality rating for this objective has to return a worse
quality rating in these cases.

In order to estimate a quality rating, for each component, a set of suppliers has
to be defined that have the ability to supply an ECU including this component.
The according database model is shown in Fig. 3.12.

From a mathematical point of view, the problem is to find a minimal set of
suppliers that are able to develop and produce the ECU or at least to find the
number of suppliers. For ECUs with a large number of components, this might
be quite difficult.

This problem is similar to the so-called Set-Covering Problem (SCP). As input
for a set-covering problem, several sets are given. The elements in these sets
can occur multiple times in the different sets. The optimum solution for the
set-covering problem is a minimum number of these sets so that each element
is covered. In this section, a number of suppliers is given for each component
and a minimum number of suppliers has to be found so that the according
ECU can be developed and produced. Each supplier can supply a subset of
all components on an ECU and the task is to find the minimum number of
the suppliers so that all components are covered. Table 3.5 shows an example
with four components and five suppliers. The minimum number of suppliers
in this example is two—possible solutions among others are for example {B, E}
or {C, D}.
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Table 3.5.: Example for a set of four components (c1,c2,c3,c4) and the according suppli-
ers (A,B,C,D,E)

supplier c1 c2 c3 c4

A 4 2 4 2

B 4 4 2 2

C 4 4 4 2

D 2 4 2 4

E 2 2 4 4

The first step in order to solve the problem efficiently is reducing the problem
size. Reduction procedures that allow removing redundant rows and columns
can be found in [CFT98]. One example for reduction rules is the removal of rows
and columns that are subsets of each other. Columns with only one element can
be removed while adding the according supplier to the solution.

If these reduction procedures do not solve the problem yet, branch & bound
algorithms can be used. Branch & bound algorithms put one supplier to the
used supplier set as one branch. The other branch is that the supplier is never in
the supplier set anymore. As soon as a valid solution has been found, this is the
new upper bound (the currently smallest number of suppliers). The lower bound
is the sum of the number of suppliers necessary already and an estimation of
a minimum number of suppliers necessary for the remaining components. No
lower bounds that have a bigger or equal number of suppliers than the current
upper bound are considered anymore. Different algorithms are mainly differing
in heuristics, which try to find the best choice for the next supplier to take or
not to take into the supplier set. This is tight related to the determination of
the lower bound, since branches with small lower bounds are normally good
choices. An overview of algorithms to solve the set-covering problem can be
found in [CFT98, CFSC01].

One possible intuitive quality rating for this objective would be the average
number of suppliers over all ECUs. The disadvantage is that the removal of
an ECU (no component allocated to that ECU) with a low supplier complex-
ity would lead to a worse quality rating although this can be considered as
an improvement. Another approach is using the highest number of necessary
suppliers as quality rating. The drawback of this idea is that changes in mid-
range quality ECUs can not be considered anymore. It is proposed to sum up
all numbers of necessary suppliers for all ECUs in order to overcome the men-
tioned disadvantages.
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Table 3.6.: Database fractions necessary for the estimation of the objectives (O) and
constraints (C)
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Resources 3.2 C O O O/C
Wiring Harness 3.3 O O

Customer Orders 3.6 O
Communication/Network 3.7, 3.8 O/C O/C

Power Functions 3.11 O/C
Comp. Def. Suppliers 3.12 O

3.9. Summary

In this chapter, parallel to the description of the different objectives, a database
model is developed. There are several sections in the database. Table 3.6 sum-
marises, for which objective/constraint, which of these fractions of the data is
necessary.

Several objectives are introduced and several different ways are proposed how
to calculate the quality ratings for each objective. It is explained how resources,
weight, costs, busload, electrical energy consumption, and supplier complexity can
be assessed. It is also shown, which constraints are involved related to the
objectives.
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This chapter gives an overview on the system architecture of MOOVE (Multi-
Objective Optimisation of Vehicle Electronics) and HeurOpt (HEURistic OPTi-
misation), which have been developed in the course of this work. Section 4.1
explains requirements on the system architecture. Section 4.2 explains the ar-
chitecture of HeurOpt, Sect. 4.3 the implementation of the domain-specific ex-
tension MOOVE. The results of this chapter are summarised in Sect. 4.4. The
design and implementation of the HeurOpt framework is based on the work of
Neumann [Neu05].

4.1. Motivation and Requirements

First, the motivation for the architecture of the system is explained. This section
shows which requirements to the system architecture exist and how they can be
fulfilled.

The main interest is to have a framework allowing the application of different
optimisation strategies to the allocation problem described in this work. In
Chap. 6, some optimisation strategies are presented and compared based on
this framework. The population-based strategies that the framework aims at are
for example evolutionary algorithms or ant colony optimisation.

Existing implementations for heuristic optimisation with a single objective
[MFM01] as well as multiple ones [BLTZ03, SU05], usually are purpose-built for
specific problems and are often programmed in C or C++. In contrast, the frame-
work architecture presented in this chapter is required to be as independent as
possible from the function allocation problem. This is ensuring its applicability
to different problems in the future.

The most important criteria for the architecture of the presented framework
have been:

• Separation of concerns

• Flexibility

• Portability and platform independence

• Small overhead
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MOOVE

Domain-unspecific

Domain-specific

JVM

Torque HeurOpt

Figure 4.1.: HeurOpt and MOOVE software layers

These criteria are explained in the following:
Separation of Concerns. It is required to strictly distinguish between domain-

specific and domain-unspecific layers, because the framework intends its appli-
cation to arbitrary problems beside the function allocation. The separation of the
concrete problem domain of vehicle electronics from the unspecific optimisation
logic is done by defining the two layers MOOVE and HeurOpt (see Fig. 4.1).
Object-oriented programming is used for structuring the spheres of responsibil-
ity by inheritance and aggregation: The inheritance hierarchy and structure of
the framework adheres to the hierarchy of the problem domain layers.

Portability and platform independence. The framework is implemented in Java
[GJSB05]. Despite the widely known statement that C++ performs better than
Java, modern Java Virtual Machines (JVM) do not lack general performance any
more [BSPF01]. The Java support of database persistence layer frameworks like
Apache Torque [Apa05] and platform independent development environments
like Eclipse [Ecl05] in addition to the built-in platform independence of Java
were significant for the decision to use Java as programming language for the
framework. Therefore, the JVM can be found at the bottom of the overview
in Fig. 4.1. HeurOpt is designed to deal with solution populations, solutions,
objectives, and constraints in a generic way by defining interfaces and imple-
menting abstract classes, component repositories, and configuration manage-
ment. In spite of the complex requirements, a kind of simplicity is achieved by
adherence to software development patterns from the well-known Group of Four
[GHJV94] and Pattern Oriented Software Architecture (POSA, [BMR+96, SSRB00])
books. To understand this chapter in detail, knowledge about design patterns
is required. The interrelationships between solutions and objectives/constraints
are implemented based on the model-view design pattern, as shown in Sect. 4.2.4.

Flexibility. A further primary goal of the framework is the application of dif-
ferent optimisation strategies to the allocation problem of vehicle electronics. It
is required to provide interfaces for solutions, populations, objectives, and con-
straints in a flexible way. Since the problem of allocating one set (of components
or abstract targeting items) completely to another set (of network nodes or ab-
stract targets) does not only relate to vehicles, implementations for this abstract
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Figure 4.2.: The HeurOpt layers

problem domain are part of HeurOpt. They can be reused for similar allocation
problems. They are the basis for the MOOVE project discussed in Sect. 4.3.

Small Overhead. To ensure a minimal overhead, efficient object cloning is re-
quired, rebuilding the relationship between populations, solutions, and objec-
tive estimations. Another possibility to reduce overhead is to inform objective
estimations implementations of solution (or concrete: allocation) changes in an
incremental way. For example, mutation and crossover operations from evolu-
tionary algorithms change only parts of a solution. The objective or constraint
implementation that has to evaluate and rate the new solution can decide ei-
ther to use the update information or to access the whole solution/allocation
information if necessary.

4.2. HeurOpt

In this section, the domain independent framework called HeurOpt is intro-
duced. The most difficult part of HeurOpt is the initialisation process as shown
in Sect. 4.2.1. The principal optimisation sequence is described in Sect. 4.2.2. The
relationships between population and solutions as well as between solution and
objective estimations are explained in Sect. 4.2.3 and Sect. 4.2.5. Figure 4.2 gives
an overview of the HeurOpt classes.

The lower part of Fig. 4.2 shows the allocation independent part of HeurOpt.
The upper part of Fig. 4.2 consists of classes that support the problem of allocat-
ing one set (of targeting items) completely to another set (of targets), bearing no
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relation to vehicles. Vehicles are not considered until Sect. 4.3, with its descrip-
tions of the MOOVE extensions.

4.2.1. Initialisation

Component1, component repository, and component configurator are design
patterns from [SSRB00, pp. 75–107]. A HeurOpt Optimiser is the aggregation
of a TerminationCondition and a SolutionPopulation. The Configurator initialises the
TerminationCondition with a reference to the SolutionPopulation.

The basic component interface just provides standards for initialisation, finali-
sation, and information retrieval. The optimiser implements the ResumableCom-
ponent interface and not the basic Component interface. The resumable compo-
nent supports run(..), resume(..), and suspend(..).

A Configurator is the first object visible to the client application. The Client
provides a ConfigurationDirective to the configurator’s processDirective(..) method.
A ConfigurationDirective can for example be an XML file2 including the settings
for the current optimisation run. The configuration directive in turn returns a
reference to the created optimiser.

4.2.2. Optimisation Sequence

Before the population with its solutions and objective estimations is discussed,
a Message Sequence Chart (MSC) of the interaction between client, component,
and termination condition is given, shown in Fig. 4.3.

The Optimiser in its role as a ResumableComponent allows to suspend(..) and
resume(..) the optimisation iteration. The suspension can be triggered asyn-
chronously and suspends the component before the next generation. After the
optimisation start with run(..), the optimiser uses the TerminationCondition as Iter-
ator, calling hasNext(..) to find out whether the termination condition is still not
met, and calling next(..) to initiate the next iteration. The TerminationCondition in
turn calls the regeneratePopulation(..) of the SolutionPopulation.

A simple implementation of the TerminationCondition could be to specify a num-
ber of iterations. More sophisticated implementations can easily be integrated—
for example they can be based on thresholds for objectives and the evaluation of
the Pareto front. The Pareto front can be accessed by getParetoFront(..) and used
for the termination condition internal checkCondition(..) method.

1The design pattern component is different from the component defined in Chap. 1.2.
2XML is the abbreviation for eXtensible Markup Language defined in [W3C04].
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Client Optimiser TerminationCondition SolutionPopulation

run()
while(hasNext())

getParetoFront()

checkCondition()

next()
regeneratePopulation()

suspend()

resume()

msc running the optimiser component

Figure 4.3.: Running the optimiser component

4.2.3. Populations

The population is defined by the SolutionPopulation interface. The population
stores the solutions, using a collection based on the SortedSolutionSet interface
(see Sect. 4.2.6).

The Solution interface (see Sect. 4.2.4) allows generic storage and access to the
quality ratings of its objectives. The operations that the population applies to its
solutions in order to modify them are dependent on the optimisation strategy.
For example it is depending on, whether it is a colony of ants or an evolutionary
population of individuals. Because of that, a population must explicitly define
a set of supported solution classes. The class names of the applied population
and solution can be configured in the ConfigurationDirective.

An important functionality of a SolutionPopulation is the method generateIni-
tialPopulation(..). During initialisation, a first single solution including the rela-
tionships to the objective estimations is set up. The population has to implement
the generateInitialSolution(..) that leads to this initial solution. The initial solution
is allowed to contain some actual solution information that is constant to all
solutions of one optimisation cycle. For example, when some components are
fix allocated (see Sect. 4.2.7), these are part of the initial solution. Addition-
ally, heuristics can be used to deduce additional parts of the solution that are
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Client
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View
newInstance()

initialise(Model)

addObserver(View)

msc model view initialisation

Figure 4.4.: Instantiation and initiali-
sation of model and view

Client Model View

service()

process()

notifyObservers()
update(Model,..)

msc model view notification

Figure 4.5.: Notification and update be-
tween model and observers

changeable. The information stored in the initial solution can help to reduce the
solution space significantly.

4.2.4. Solutions

The most important role of a solution is the Model, according to the model-view
paradigm. It is primarily defined in Java [GJSB05] by the java.util.Observable in-
terface. An alternative is the model-view-controller (MVC) pattern in [BMR+96,
pp. 125–143]. There is some semantic gap between the Java definition of model
and view and the definition from the MVC pattern. The MVC pattern differ-
entiates between observer (or controller) and view. The model-view paradigm
treats them synonymously.

HeurOpt only makes use of the Model, ModelData and Observer interfaces,
although the design pattern contains more. The class View is used with the
semantics of an Observer, in accordance to the Java definition and in contrast to
the MVC pattern definition. The Model interface is implemented by solutions.
The View interface is implemented by the ObjectiveEstimations (see Sect. 4.2.5).
The two standard use cases of the model-view pattern are shown in Fig. 4.4 and
Fig. 4.5: the initialisation as well as the notification and update.

The ObjectiveEstimation objects evaluate a solution according to an objective.
The result is provided as a numeric value, represented as QualityRating object.
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Chapter 3 explained how to calculate these quality ratings. In Sect. 4.2.5, it
is explained how constraints can be defined. The most important role of an
ObjectiveEstimation in relation to a solution is the one as a View.

The Model has two tasks. First, it has to store the data of the model. Solution-
ModelData is extending the MVC-class ModelData and is explained more in detail
in Sect. 4.2.7. The model data is further extended by the optimisation domains.

The second task of the Model is to behave like an Observable. Therefore, the
observers that are registered at the observable have to be managed. In the con-
text of optimisation iteration, the ObjectiveEstimation classes are the only classes
that implement the Observer interface. Since the Solution implements the role of
a model, and since the objective estimations implement the role of an observer,
there are two equivalencies to remember: the Solution/Model/Observable and the
ObjectiveEstimation/View/Observer. The significant methods of the Model as Ob-
server are addObserver(..), deleteObserver(..) and notifyObservers(..). Especially, the
addObserver(..) is used during initialisation of the framework to register the OEs
at a solution.

The notifyObservers(..) has to be invoked when the model is changed. The
model changes during the initialisation or during a call of regeneratePopulation(..).
In Fig. 4.5, these methods are summarised as service(..). After a call of service(..),
the model will process(..) the changed data. Finally, the model iterates over its
observers invoking their update(..) method. According to the design pattern,
the parameters of the update methods contain a reference to the model and
an object that should represent the model change. Although each view stores a
reference to the model, this reference is still provided as parameter of the update
method because it is possible for an observer to register at different models. For
solutions and OEs, this is not necessary, since separate OE instances are used for
each solution. Support for cloning is provided instead of reusing OE instances
for multiple solutions, which would introduce management overhead to the OEs
for the de-multiplexing, especially for incremental updates.

4.2.5. Objective Estimations

ObjectiveEstimation objects have to evaluate a solution according to an objective.
The result is provided as a numeric value by the method calculateQualityRating(..).
Each Solution has several ObjectiveEstimations.

ObjectiveEstimations handle constraints as well. Constraints have to imple-
ment the ConstrainedObjectiveEstimation interface, extending the ObjectiveEstima-
tion. Constraints are declared like objective estimations and provide their de-
grees of violation in form of their QualityRating. If a constraint is violated, the
isViolated(..) method has to return true.
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In comparison to the Chap. 3, additional objective estimation can be defined
by implementing the ObjectiveEstimation interface and adding the implemented
class to the ConfigurationDirective.

4.2.6. Container Classes

Many populations need a container class in order to store solutions sorted
according to different ratings. The SortedSolutionSet interface defines the get-
ParetoFront(..) method. The concrete implementation can be defined in the Con-
figurationDirective.

One possible implementation that is used by an evolutionary algorithm
is the SPEA2 archive. According to the description in Sect. 2.1.2, a
SPEA2SortedSolutionSet can be implemented providing an additional truncate(..)
method.

4.2.7. Solution Model Data for Allocations

This section introduces some concepts dealing with the problem of allo-
cating a set of targeting items completely to another set of targets. These
classes/interfaces are used by the MOOVE extension in Sect. 4.3: TargetingItems
are the SW/HW-components that have to be allocated to the ECUs (speciali-
sations of Targets). The classes in this section are not directly related to the
optimisation and the strategy, but are aggregated by Solutions to represent their
ModelData as explained in Sect. 4.2.4. Additionally, this section provides under-
standing of the allocation problem, and is necessary to understand the concept
of local models in the following Sect. 4.2.8.

For expressing the allocation of a set of targeting items to a set of targets, the
concept of edges is applied: EdgeID aggregates one Target and one TargetingItem
object, and therefore represents an identifier for an edge of the allocation.

An edge has a status type, expressing whether it is actually allocated or not.
For this purpose, the enumeration class StatusType exists. It realises the main
types ALLOCATED and NOTALLOCATED. Additionally, the types INIT for initialisa-
tion purposes with the semantics of unknown, and the types ALWAYSALLOCATED
and NEVERALLOCATED for fixed allocation information are available. The ag-
gregation of an edge identifier with a status type is standardised as EdgeStatus
class.

The information for the allocation itself is implemented as AllocationModelData.
Its initialisation requires a TargetingItemSet and a TargetSet. It constructs a matrix
with all edge identifiers in the status type INIT as coefficients. The status types
are changed during the initial phase. First, the fixed allocation information
are filled. During each optimisation iteration, the allocation is changed by the
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dynamic operations. Figure 4.6 shows an example for an initialised allocation
structure. It is not allowed for a targeting item to be allocated on two different
targets at the same time.

The GlobalAllocationSolution uses the AllocationModelData as model data. The
GlobalAllocationSolution is further extended by the MOOVE extension in Sect. 4.3,
introducing vehicle semantics. The implementations in the HeurOpt packages
deal with targets and targeting items in a generic way. The Global-prefix is
explained in the next section, when the local models are introduced.

An EdgeOperation or a set of edge operations is used as change-object by the
notifyObservers(..) and update(..) methods between a GlobalAllocationSolution and
its GlobalObjectiveEstimation observers. The GlobalAllocationSolution provides an
apply(..) method that transforms EdgeOperation objects into model change and
update notifications.

4.2.8. Local Models

This section introduces a concept of the integration of inner optimisation loops
into outer optimisation iterations. The motivation lies within the concrete prob-
lem domain of control networks for vehicles.
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For many objective estimations, the determination of a quality rating working
only with the data of one ECU is much easier. A global objective estimation can
aggregate the quality ratings of the local ones. For example, the implementa-
tion of a cost estimation including the variant optimisation according to Chap. 7

could cover only single ECUs. The global cost estimation has to add the cost
values in order to determine the total costs.

The framework supports an integration of target-local solutions into a global
allocation solution. This means that for example the update and notification
between global and local solutions as well as the according global and local OEs
are supported. Additionally, the cloning mechanism must support the rebuild-
ing of these interrelationships. The framework does not support any decision
process of when to run the local optimisation. The local optimisation might intro-
duce significant overhead—it is often not applicable to run it for each newly
generated global allocation solution and all dependent local models. The global
solution and the global objective estimations must be aware of the local models
and make this decision on their own.

The target-local solution is represented by the LocalAllocationSolution interface.
It extends the Solution interface, but also extends the View interface, being a view
of the GlobalAllocationSolution objects.

In contrast to the global allocation solution, which represents an allocation,
the LocalAllocationSolution just represents a single Target with a set of targeting
items that are (currently) allocated to the target. The TargetingitemsPerTargetSet
is used as ModelData—it is a partition of the AllocationModelData used by the
global solution.

The global optimisation changes the set of targeting items for each target,
because the allocation-edges are changed. During a local optimisation, its set of
targeting items must not change. The set is represented by a TargetingItemSet. A
local solution is not conceptually related to allocations.

Figure 4.7 provides an exemplary overview of the structure and interrelation-
ship that are the results of the initialisation for one solution. The upper half of
Fig. 4.7 shows a solution s with its registered OEs. As examples for the OEs,
just use a subset of the ones explained in Chap. 3 (C: costs, BL: busload, W:
weight, E: Energy, HWA: Hardware Availability (instance of resources)) is used.
The HWA in Fig. 4.7 is a constraint and in the same role as the other objective
estimations. The lower half of the figure represents the local models for the
two ECUs e1 and e2 and their relation to the global objects. The arrows indicate
access availability.

A GlobalObjectiveEstimation can decide to use no LocalObjectiveEstimations (local
OE). It must indicate this by returning true for the isPureGlobal(..) method. In
Fig. 4.7, the example for this is the busload (BL), because the busload only needs
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the global view under any circumstances. The isPureGlobal(..) method is mainly
used during the creation process for the local OEs, skipping such global OEs.
After the creation and initialisation of the local OEs, the local solution is now
also initialised according to its first role.

4.3. Multi Objective Optimisation of Vehicle Electronics

Based on the HeurOpt framework, the MOOVE project consists of concrete
implementations for the vehicle domain, and aims to solve the problem of allo-
cating software and hardware components to ECUs. An overview can be found
in Fig. 4.8. It can be seen that only a small portion of the architecture is opti-
misation algorithm specific. This makes it easy to implement and test different
optimisation strategies. A database aware configurator is available as well as
several implementations of optimisation algorithms. The database model intro-
duced in Chap. 3 is part of the MOOVE project as well as objective estimations
including their constraint implementations.

MOOVE implements a special configurator and directive extending the
HeurOpt Configurator that is aware of the database. The MOOVE project pro-
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vides the VehicleConfigurator. It uses the database as input for the TargetSet and
the TargetingItemSet. The implementation of the Torque-generated class3 Compo-
nentInstance for accessing the tuples of the component instance relation is changed
so that the TargetingItem interface is supported. The class for the network node re-
lation is equally extended to support the Target interface.

The VehiclePopulation class implements the generateInitialSolution(..) method.
The manually provided information about fixed allocations from the database
is accessed and applied to the initial solution, preparing the AllocationModelData
like it was shown in Sect. 4.2.7.

Furthermore, the VehiclePopulation class implements the method generateIni-
tialPopulation(..) using the randomFill(..) method to create solutions for the initial
population. The creation of the initial population is highly dependent on the
optimisation algorithm. Further extensions are explained in Chap. 6.

According to the discussion of local models in Sect. 4.2.8, the VehicleLocalSolu-
tion is available as ECU-local solution and uses the generic TargetingitemsPerTar-
getSet as model data. It delegates update notifications to the local OEs calling
the notifyObservers(..) method inherited from the HeurOpt implementations.

Several objective estimations are available as part of the MOOVE project. They
have been implemented based on the objectives and database models in Sect. 3.

3Torque generates a Java class for each relation in the database.
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4.4. Summary

In this chapter, the HeurOpt framework and the MOOVE project are explained.
It is shown that the requirements from Sect. 4.1 are fulfilled. It is explained how
an optimisation algorithm is composed from different solutions, populations,
iterators, and objective estimations. It is also shown, how the framework can
be extended with further objective estimations. Torque can be connected to a
big number of different database implementations. All these database imple-
mentations care for the consistency of the stored data by checking the primary
key, unique, and foreign key constraints. The implementation has been per-
formed based on Java to reach platform independence. The architecture of the
framework ensures reusability of large parts of the code for different problem
domains.

With HeurOpt and MOOVE, a framework is available enabling all implemen-
tations and benchmarks necessary in the course of this work.
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5. Description of the Application
Example

In this chapter, an application example is shown. As already explained pre-
viously, there is an endless number of electronic functions in modern vehicles
providing both comfort and safety to the driver. In this chapter, a small number
of these functions have been chosen. Still, this example is representing the typ-
ical tasks, architects of electronic systems in vehicles are confronted with. The
application example is an allocation task for the functions keyless entry, central
door locking, direction indication, and exterior light. Since some of the functions
might be new to the reader, all functions are explained first (see Sect. 5.1). A
detailed function specification is given in Sect. 5.2. Section 5.3 shows, which
results can be gathered with existing methods.

5.1. Functions Used in the Application Example

In this section, all functions that are part of the application example are ex-
plained and the necessary components are introduced. A total of 22 components
are defined.

5.1.1. Exterior Light

The basic sub-functions of the function exterior light are driving light, parking
light, high beam, braking light, fog light, fog rear light, and reverse gear light.

Drivers can control the functions driving light, parking light, fog light, and fog
rear light by a light turn switch cEL−LTS. The functions parking light (only left
or right) and high beam are controlled by the direction indicator switch cDI−SW
(see Sect. 5.1.2). The functions braking light and fog light are controlled by other
functions, which are not modelled in this example.

In order to perform the above functions, an exterior light control component
cEL−CTRL is necessary. It is computing the prioritisation, and it is proofing other
conditions like ignition status and so on. For example, it is not only depend-
ing on the status of the light turn switch, but also on the ignition status, the
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rain/light sensor, and the coming/leaving home function, if the driving light is
on.

Two different actuators have been modelled: The Front Light Unit (FLU) and
the Rear Light Unit (RLU). The according four instances of components—a left
and a right one in each case—are named cEL−FLU−L, cEL−FLU−R, cEL−RLU−L, and
cEL−RLU−R. They already include the direction indication lights.

If a rain/light sensor component cEL−RLS is assembled, the additional function
coming/leaving home is available. The coming/leaving home function is sup-
posed to switch on the light during the driver’s way to or from the car at night.
The function leaving home switches on the exterior light, as soon as the car is
unlocked by the radio remote key (see Sect. 5.1.3) and until a door is opened.
The function coming home keeps the exterior light on, once the driver leaves the
car for a certain time. The rain/light sensor component is necessary for these
functions, since they are only active, if it is dark outside.

5.1.2. Direction Indication

The function direction indication consists of the sub-functions direction indication,
hazard-warning signal flasher, crash signal flasher, panic signal flasher, central door
locking confirmation, trailer direction indication, and theft alarm light among others.
Some of the sub-functions are implemented since decades in cars, like for ex-
ample direction indication and hazard-warning signal flasher. The central door
locking confirmation has the task to confirm, once the door locks are secured or
unsecured after operation of the remote key. After the notification of a crash by
another car system, the crash signal flasher is automatically operated similar to
the hazard-warning signal flasher. If somebody without authorisation wants to
open/start the car, the theft alarm light is started beside the horn.

In this application example, the components direction indication switch cDI−SW
and hazard light switch cDI−HLSW provide input signals. There are three control
components, the direction indication master control cDI−CTRL, the direction indication
front control cDI−FR−CTRL, and the direction indication rear control cDI−RE−CTRL.
Different control components for front and rear a useful in order to allow more
degrees of freedom during the allocation.

5.1.3. Central Door Locking and Keyless Entry

The function central door locking secures all door locks, once the driver com-
municates this wish by locking one door lock with the key or by pressing the
according button on the radio remote control. For executing this function, the
central door locking control component cCDL−CTRL needs a radio receiver cCDL−REC
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and the four door lock components cCDL−DL−FL, cCDL−DL−FR, cCDL−DL−RL, and
cCDL−DL−RR.

Keyless entry is an extension of the normal central door locking function. The
benefit is that the driver can keep the key in his pocket. Once the driver ap-
proaches the car, several antennas within the car recognise the location of the
key. A signal is sent to the central door locking component to open the locks,
once the driver approaches the according door handle. A button on each door
lock allows the driver to secure the car without touching the key when leaving
the car. A detailed description of a similar system can be found in [SKPR98].
For the execution of this function, an additional keyless entry control component
cKES−CTRL and three antenna components cKES−AN1, cKES−AN2, cKES−AN3 are nec-
essary.

5.2. Detailed Specification of the Example

This section specifies the functions and components introduced in the last sec-
tion more in detail. Thereby, the database model explained previously in Chap. 3

is used. An overview of all components and their specification can be found in
Tab. 5.1. All values in this table are explained in the course of this section.

Components can be composed from software, hardware, and sen-
sors/actuators. If a component contains a sensor/actuator, a number of ca-
bles have to be connected from the allocated ECU to the location of the sen-
sor/actuator. The locations (columns x, y, and fraction) specified in Tab. 5.1 are
the locations of the sensor/actuators. Only components, that have values for
their location, contain a sensor/actuator.

5.2.1. Network Topology

The network topology consists of five ECUs. They are called body power module
front (BPMF, eBPMF), body power module rear (BPMR, eBPMR), switch module steering
column (SMSC, eSMSC), door control unit driver (DCUD, eDCUD), and door control
unit co-driver (DCUC, eDCUC). They are connected to a CAN network with 100

kBaud. The other network nodes existing in a real car on this network are not
modelled in the example. The network is additionally connected to a gateway
connecting the ECUs to all other necessary functions, for example the gear box
providing the reverse gear signal in order to enable the reverse gear light (see
Sect. 5.1.1). An overview of the network topology is presented in Fig. 5.1. An
overview of all parameters of the network topology can be seen in Tab. 5.2. All
these values are explained in the course of this section.
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Table 5.1.: Overview of the definition of the components
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cEL−LTS 1 0 1 0 4 A,B,C −0.4 2.9 l
cEL−CTRL 1 64 – – 2 A,B,C – – –
cEL−FLU−L 1 0 0 10 2 A,B,C −0.5 4.2 l
cEL−FLU−R 1 0 0 10 2 A,B,C 0.5 4.2 l
cEL−RLU−L 1 0 0 15 2 A,B,C −0.6 0.0 r
cEL−RLU−R 1 0 0 15 2 A,B,C 0.6 0.0 r
cEL−RLS 1 0 1 0 2 A 0.1 2.95 l
cDI−SW 1 16 1 0 2 A,B,C −0.2 2.9 l
cDI−HLSW 1 16 1 0 4 A,B,C −0.35 2.9 l
cDI−CTRL 1 64 – – 2 A,B,C – – –
cDI−FR−CTRL 1 32 – – 2 A,B,C – – –
cDI−RE−CTRL 1 32 – – 2 A,B,C – – –
cCDL−CTRL 1 32 – – 4 A,B,C – – –
cCDL−REC 1 0 0 2 4 A,B,C 0.1 2.75 l
cCDL−DL−FL 1 0 0 2 2 B −1.0 2.2 l
cCDL−DL−FR 1 0 0 2 2 B 1.0 2.2 r
cCDL−DL−RL 1 0 1 0 2 B −1.0 1.4 l
cCDL−DL−RR 1 0 1 0 2 B 1.0 1.4 r
cKES−CTRL 1 16 – – 4 C – – –
cKES−AN1 1 16 0 2 4 C 0.3 2.7 l
cKES−AN2 1 16 0 2 4 C 0.75 1.9 r
cKES−AN3 1 16 0 2 4 C −0.2 0.0 r

5.2.2. Resources

In this example, the number of components per ECU is limited. Therefore, a
resource called space for components is defined. Each component consumes

BPMF BPMR SMSC DCUD DCUC

gateway

not
modelled

ECUs

not
modelled

ECUs

not
modelled

ECUs

network: CAN 100 kBaud

Figure 5.1.: Network topology of the application example
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Table 5.2.: Overview of the definition of the hardware topology

ECU number space ROM x y fraction
kB m m

eBPMF 1 max units = 5 max units = 128 −0.6 3 l
eBPMR 2 max units = 5 max units = 128 0.6 0.9 r
eSMSC 3 max units = 5 max units = 128 −0.3 2.9 l
eDCUD 4 max units = 5 max units = 64 −0.75 2.8 l
eDCUC 5 max units = 5 max units = 64 0.75 2.8 r

one unit of this resource. The ECUs in the network topology limit the number
of components to be allocated by providing space with max units = 5. In this
example, the space resource is representative for all other kinds of resources,
like for example circuit board space or timer/CPU load constraints. Once, more
than a certain number of components are allocated to an ECU the constraint is
violated. The according quality rating qspace equals to the sum of the number of
supernumerous components on all ECUs.

A further resource is called ROM. The two door control units provide a
smaller amount of ROM than the others (see Tab. 5.2). The amount of ROM
consumed by the components is shown in Tab. 5.1. Quality ratings qROM for the
resource ROM are determined analogue to qspace. If the constraints are violated
each Byte that does not fit on the micro-controller is summed up.

There are two different types of the resource cable. They are called thin cable
and thick cable. Cables are consumed with a number of cables. The values in the
two cable columns in Tab. 5.1 represent this number of cables. The number of
consumed cable resources indicates how many cables are necessary in order to
fulfil the specified function. For example, a front light unit needs 10 thick cables,
because there are 10 bulbs to control. Thick cables are mainly used, if power
has to be transmitted like for lights. Thin cables are primarily used for signals.
For example the rain/light sensor pre-processes the sensor data and sends the
signals about the current weather or light condition via a single thin cable to
the receiver ECU. No quality rating is necessary for the cable resource, since
there are no constraints on this resource. It is not constrained in this example,
although in reality it could make sense to limit the number of cables leaving an
ECU depending on the installation location.
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Figure 5.2.: Overview of the location of ECUs and sensor/actuators contained in com-
ponents

5.2.3. Costs

Cable resources are defined above. In this example, cables are the main influence
factor for costs that can be influenced by the allocation of components in this
example. Costs that can be saved for example by optimisation of variants are
not taken into consideration. An additional example for variant optimisation is
presented within Chap. 7. A cost influence of 0.05 C/m for the thin cable and of
0.1 C/m for the thick cable is specified, where C is a virtual cost unit. Basic ECU
costs are not defined at all. Thus, the costs determined by the quality rating
qcosts represent only the wiring harness.

For the sake of transparency, the wiring harness is specified only 2-
dimensional. The parameters distance from rear, breadth, and distance from
bottom (see Sect. 3.4.3) are set to dr = 1.2 m, db = 1.5 m, and dh = 0 m. The
locations in x- and y-direction as well as the connected fraction of the wiring
harness can be seen in Tab. 5.2 for the network topology and in Tab. 5.1 for the
components. Only the left (l) and right (r) wiring harness fraction are used in
this example. An overview of the locations is given in Fig. 5.2. Components are
symbolised by simple rectangles, ECUs show a second horizontal line at the top.

5.2.4. Weight

For the sake of easiness, the objective weight is not used in this example. The
weight of a cable is often almost direct proportional to its costs. Thus, an opti-
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Figure 5.3.: Functional network including all components and signals specified in the
form [bsig, tu] of the application example

misation of costs is optimising the weight already.

5.2.5. Busload

As already shown in Sect. 5.1, the functions of this example are highly net-
worked. All network interconnections are collected and summarised in Fig. 5.3.
All signals are tagged in the form [bsig, tu], denoting the length of the signal bsig
and the minimum update time tu according to Sect. 3.6.

In order to calculate the busload, first of all, the network has to be specified.
The network is a CAN network with a transmission rate of r = 100 kbit

s . The
protocol overhead factor is poh = 2.125, according to Sect. 3.6.3. Since CAN is
not time-triggered, delay times are not relevant in this example. Thus, tcyc in
(3.13) equals the update time tu of the signals. The variable sigN,tr denotes the
set of signals that have to be transported via the network. In this example, it
contains all signals between two components that are not located on the same
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ECU. The net busload lN caused by all signals using the network is determined
with

lN =
1
r ∑
∀sig∈sigN,tr

pohbsig

tu
. (5.1)

In Sect. 3.6.4, an aggregation model is proposed. Since only one network is
involved in this example, the parameter w of this aggregation model can be set
near 1. Thus, the quality rating qbusload is determined according to (3.14) (see
p. 51) with

qbusload =
lN

lmax
N − lbas

N
. (5.2)

The value for lmax
N − lbas

N is set to lmax
N − lbas

N = 0.017. It is assumed that the
basic load of the network without these new functions lmax

N has a certain value
and the maximum busload is 1.7 % higher due to extendibility. For example, if
only one signal with bsig = 4 bit and tu = 100 ms has to be transferred, with
(5.1) follows lN = 0.00085 and thus, qbusload = 0.00085

0.017 = 0.05. That means, this
signal occupies 5 % of the available busload.

5.2.6. Electrical Energy Consumption

For the application example, the number of active ECUs according to Sect. 3.7.1 is
applied instead of using the more complex consideration of different use cases
(see Sect. 3.7.2). The quality rating qenergy represents the number of ECUs that
have to be active, when the car is in the idle mode. It gives a good estimation, if
a high quiescent current is caused by the allocation of functions. For example,
if all keyless entry antennas are placed on different ECUs, all of them have to be
awake in the idle mode. The column idle active in Tab. 5.1 contains all necessary
data for this objective. Each component that is active in the idle mode is ticked
in Tab. 5.1.

5.2.7. Supplier Complexity

Supplier complexity represents the sum of necessary suppliers for each ECU as
described in Sect. 3.8. For this example, three imaginary suppliers A, B, and
C have been assigned to the components (see column supplier in Tab. 5.1). If
there are no restriction in relation to the supplier, all suppliers are possible. The
quality rating qsupplier is the sum of all numbers of suppliers for all of the five
ECUs. Thus, if all five ECUs are used, the best thinkable value is qsupplier = 5.
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5.3. Optimisation Results With Existing Methods

This section shows existing methods for determining a solution. These meth-
ods are used and it is tried to determine the best solution for the problem
given above. Solutions s are normally described according to the definition
in Sect. 1.5 and s = {a1, a2, ..., aq}T, with a = {c

asg
→ e}. In this section, a

short form is used in order to have a more compact representation. A solu-
tion is described with a sequence of ciphers without separator in curly brack-
ets. Each cipher indicates the ECU, on which a specific component is allo-
cated. Each cipher is the allocation of a component according to the order
in Tab. 5.1. The numbers of the ECUs are sorted according to the order in
Tab. 5.2 beginning with 1. For example: s = {2222222333335555554444} =

{cEL−LTS
asg
→ eBPMR

︸ ︷︷ ︸

2

, . . . , cDI−SW
asg
→ eSMSC

︸ ︷︷ ︸

3

, . . . , cKES−AN3
asg
→ eDCUD

︸ ︷︷ ︸

4

}T.

5.3.1. Manual Optimisation

In reality, often an approach is applied for optimising the function allocation to
ECUs similar to the following:

1. Heritage. In order to reduce risk, the architecture of older type series’ is
cloned.

2. Domain grouping. New functions are allocated near1 to other functions of
the same domain.

3. Improvement proposals. In the third step, the solution is made feasible. Then,
further improvements proposals are made. Once a solution is compliant
with the constraints, the most important objectives are safety and costs.

Since there is no history in the presented example, it is directly started
with grouping the functions by domain. Grouping by domain means that
first, the four domains exterior light, direction indication, central door lock-
ing, and keyless entry are treated as units and they are allocated only to-
gether. With this approach, only 54 = 625 solutions have to be tested. If
domination (see Def. 1) is only applied to the severity of the constraint viola-
tion, there is only one solution dominating all others: The exterior light is allo-
cated to BPMR, direction indication to SMSC, central door locking to DCUC,
and keyless entry to DCUD. Using only four ECUs seems to save a com-
plete ECU, but the quality ratings of the solution {2222222333335555554444}

1Near in this sense can mean allocated onto the same ECU or connected to the same network.
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are q = {qspace; qROM; qcosts; qbusload; qenergy; qsupplier} = {3.0; 32000; 21.965; 0.613;
4.0; 5.0}. Thus, this solution is infeasible.

This solution has three critical ECUs, where the constraint violations take
place: DCUC carries six components, but is only allowed to have five allo-
cated on. BPMR carries seven components instead of five. The amount of used
ROM on SMSC is 160 kB instead of 128 kB. No components are allocated to
the BPMF. After re-allocating the components EL-RLS, EL-LTS, DI-HLSW, DI-
SW, and CDL-DL-FL to the BMPF, the solution {1222221113335515554444} is
feasible. The according quality ratings are q = {0.0; 0.0; 20.97; 0.590; 3.0; 7.0}.

Finally, an emulation of the process of improvement proposals is performed.
With the current solution, all movements of single components to different ECUs
are tested. Due to the tight constraints qspace and qROM, all exchanges of all
combinations of two components located on different ECUs are tested as well. It
can be argued that costs are very important. On the other hand, how much cost
causes a high number of ECUs active during the idle mode of the car? Therefore,
in two different runs, two different criteria have been defined for accepting a
movement of one or an exchange of two components as improvement:

• The new solution is improving the old one in at least on objective and is
not worsening it in the other ones.

• The quality rating for the objective costs has improved and the solution is
still feasible (or the new solution is dominating the old one).

In the first case, only three improvement proposals can be found and the
resulting solution sdom = {1233221113335545554444} has quality ratings of
q = {0.0; 0.0; 14.465; 0.540; 3.0; 7.0}. In the second case, 22 found improvement
proposals led to a solution scosts = {3231221443331145425452} with the follow-
ing quality ratings: q = {0.0; 0.0; 11.8125; 0.915; 5.0; 9.0}. The costs are much
lower, but in the other objectives, significant worsenings has to be accepted.
Here, the main drawback of this kind of optimisation can be seen clearly. No
trade-off solutions are available in order get a better result according to the other
objectives while investing a small amount of costs.

5.3.2. Exhaustive Search

Another possibility for determining solutions is to perform an exhaustive
search. Each possibility can be tried in order to get a good result. The com-
puter used for this test manages to evaluate about 200 possible solutions per
second. The test problem described above has 22 components allocated to a
maximum of five ECUs. In order to test the complete possible solution space,
522 ≈ 2 · 1015 evaluations have to be performed. With the test computer, it would
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Table 5.3.: Pareto set gathered with a random run of one day
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{5333221532325452511144} 0.0 0.0 15.4575 0.9025 4.0 8.0
{1131145152322225534444} 0.0 0.0 25.3975 0.8275 4.0 7.0
{5414223231112245335553} 0.0 0.0 14.3525 0.9150 3.0 9.0
{4332321452221111534445} 0.0 0.0 23.8100 0.7650 3.0 8.0
{5321335531114454152223} 0.0 0.0 30.6750 0.7650 4.0 7.0
{1152132542223331354414} 0.0 0.0 34.0225 0.8275 3.0 7.0
{4111453323135532524244} 0.0 0.0 22.3600 0.8775 3.0 8.0
{2533551123334515214142} 0.0 0.0 19.6350 0.8400 4.0 9.0
{4241224251123351315445} 0.0 0.0 15.2425 0.9775 3.0 8.0
{1244225311415533225531} 0.0 0.0 16.3275 0.9400 3.0 8.0
{5221225111123344354534} 0.0 0.0 18.9075 0.8775 4.0 10.0
{5441424221153142253333} 0.0 0.0 18.8325 0.9625 4.0 7.0
{5534255223331214421411} 0.0 0.0 18.4725 0.8875 4.0 8.0
{1213252341115525434434} 0.0 0.0 17.6650 0.8875 4.0 9.0
{4243225543324152351411} 0.0 0.0 15.0875 0.9900 2.0 7.0
{1141212542224453135455} 0.0 0.0 20.0200 0.8900 3.0 7.0
{4311354551114435252232} 0.0 0.0 21.7525 0.7900 4.0 8.0
{1244224113434152155255} 0.0 0.0 13.9300 0.9900 4.0 8.0
{5144311522425515213333} 0.0 0.0 25.9800 0.8625 3.0 7.0
{5211223413134445413235} 0.0 0.0 13.4775 0.9525 5.0 8.0
{4535535412224412113334} 0.0 0.0 27.0525 0.9375 3.0 6.0

take about 400,000 years to evaluate all possible solutions. Even if the number
of evaluations could be increased to 200,000 solutions per seconds, which is cur-
rently only thinkable by massive parallelisation or a signification improvement
of the evaluation implementation, the result would be available only after 400

years. After a one day run or about 17 · 106 random evaluations, a Pareto set
had been found as shown in Tab. 5.3. The solution sdom dominates over 85 %
of the randomly found solutions and is not dominated at all. Although, scosts
is not dominating a single one, the value for the objective costs is much better.
Another interesting aspect is that only about 0.001897 % of the solutions were
valid. It can be concluded that this random run of one day did not find good
results for this application example.
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5. Description of the Application Example

5.4. Summary

In this chapter, an application example has been presented. Four different func-
tions have been explained and specified. It has been shown that existing meth-
ods are not sufficient for getting a bunch of good trade-off solutions. In the
course of this work, it is shown that it is possible to find much better solutions
for this application example. In reality, the most allocation problems are more
constrained. For example, there are rarely components that have a degree of
freedom as high as in this example. Mostly, there are only two or three possible
target ECUs. Furthermore, this approach is only thought for local optimisation
problems and not intended for optimising the function allocation of the whole
vehicle in one step. Thus, the application example can be seen as a kind of
worst-case scenario as benchmark for the optimisation algorithms.
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6. Multi-Objective Optimisation of the
Function Allocation

This chapter presents optimisation algorithms that can be applied in order to
find an optimal function allocation. First, the usage of evolutionary algorithms
is examined (see Sect. 6.1). In Sect. 6.2, ant colony optimisation is applied to the
same problem. Many parameters p are involved in the described optimisation
algorithms like for example population size or mutation rate. The appendix con-
tains a summary of the parameters of the evolutionary algorithm (see Tab. A.1)
and the ant colony optimisation algorithm (see Tab. A.2). Section 6.3 explains,
which parameters to tune in which way in order to improve the optimisation
results. Finally, in Sect. 6.4, evolutionary algorithms and ant colony algorithms
are compared. It is discussed, which algorithm should be preferred.

6.1. Optimisation of the Function Allocation with
Evolutionary Algorithms

As shown in Sect. 2.1.2, SPEA2 gives a good basis for optimisation problems
with a high number of objectives. Nevertheless, in SPEA2 several points are not
defined and have to be adopted for this specific optimisation problem. Open
points according to Alg. 2 (see p. 18) are the representation of a solution, the
generation of the initial population, and the application of evolutionary opera-
tors. Furthermore, there is no idea given how to handle constraints.

6.1.1. Generation of the Initial Population

The first task according to Alg. 2 is the generation of an initial population. There
are several possibilities to do this. In principle, any optimisation method can be
used in order to generate the initial individuals.

However, a widely known method is just filling the initial population with
random solutions. A random solution in this problem domain can be generated
by allocating each component to a randomly chosen ECU.

Another approach is generating local search solutions. Local search algo-
rithms make a local optimum choice at each iteration with the hope of finding
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one possible exchangeone possible movement

2222224333335555554444

2222222333335555554444

2222225333335255554444

2222222333335555554444

Figure 6.1.: Examples for movement and exchange of components

the global optimum. Unfortunately, due to this local optimum choice, there is
a risk that the global optimum is not found. For the solution representation in
this work, a local search optimisation algorithm according to a single objective
is defined in Alg. 3 applying movement and exchange of single components.
Figure 6.1 shows examples for a movement and an exchange for the solution
s = {2222222333335555554444}.1

Algorithm 3: Local Search Optimisation of a Solution According to a Single
Objective
Input: A not optimised solution, an objective to optimise according to
while improvement can be found do1

Try all movements of components to other ECUS;2

Try all exchanges of the allocation of all pairs of components;3

Apply movement or exchange with the most improvement in the given4

objective;
end5

return The local search optimised solution;6

In the evolutionary algorithm applied in this work, the population size |P|
has a fixed size. A mixture of both methods is applied in order to generate the
initial population. First, according to each objective, one local search solution
is generated. The rest of the population is filled with random solutions. The
desired size of the population can be configured by the user. A parameter
population size factor pPSF defines a factor that is multiplied with the number of
objectives in order to determine the desired |P|. For example, with the initially
used value pPSF = 4, 25 % of the initial solutions are generated by local search
and 75 % randomly: With the application example from Chap. 5 (6 objectives)
and a pPSF of pPSF = 4, the population size is 24. Thus, 6 solutions are generated
by local search and 6 by local randomly.

1The notation of s is according to the definition in Sect. 5.3.
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6.1. Optimisation of the Function Allocation with Evolutionary Algorithms

6.1.2. Evolutionary Operators

Since the realisation of evolutionary operators is mainly dependent on the rep-
resentation of solutions, these operators have to be specifically defined for each
representation. Standard types of evolutionary operators are for example muta-
tion and recombination.

Zitzler et al. demonstrate in [LZT01] a dependency between the size of the
solution representation and the necessary mutation rate. Therefore here, the
resulting mutation rate pM is defined by the size of the solution representation,
indicated by the number of components |s|, and the parameter normalised muta-
tion rate pMR with pM = pMR/|s|. Initially, a value between the values proposed
by Zitzler et al. is chosen with pMR = 2.2 In the application example, this is
resulting in a mutation rate of pM = 2/22 ≈ 0.091.

The mutation algorithm itself is depending on the representation. In this
work, two different mutation operators are defined. With a probability of pM,
the assignment of a component is mutated. With a probability according to the
parameter move mutation rate pMMR, the so-called move mutation is performed
instead of other mutation operations. The move mutation changes the assign-
ment of the specific component to another randomly chosen ECU similarly to
the local search described above.

Due to the possibly quite tight resource constraints, it makes sense to define
an additional type of mutation operator that is called exchange mutation. This
mutation operator exchanges the allocation of two randomly chosen compo-
nents. With a probability of 1 − pMMR, the exchange mutation is performed
instead of the move mutation. The exchange mutation randomly chooses an-
other component and exchanges the allocated ECUs of both. Initially, the move
mutation rate is set to pMMR = 0.5. Both mutation operators are similar to the
move and exchange during the generation of the initial solution population as
shown in Fig. 6.1.

Another issue beside mutation is recombination. Similar to the exchange muta-
tion, the crossover operator exchanges the assigned ECUs of the same component
in two different randomly chosen solutions. With a probability of the crossover
rate pCR, the assigned ECU of each component is switched. In a first approach,
the value pCR is set to pCR = 0.5 in order to get offspring solutions that are
composed of 50 % of each parent solution in average.

6.1.3. Modified Truncation Operator Preserving Boundary Solutions

Until now, the solution representation and operators are independent from
SPEA2. In this section, a shortcoming of the original truncation operator in

2In [LZT01], values for pMR between 1 and 10 are proposed.
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Figure 6.2.: Example for solutions in a non-dominated set

SPEA2 is explained and a proposal is presented how to overcome it.
The original SPEA2 truncation operator Torig (see Alg. 2, p. 18) is designed

for keeping diversity and preserving boundary solutions from being removed.
This works fine for optimisation problems with only two objectives. For three or
more objectives, the counter example in Fig. 6.2 shows that boundary solutions
can still be removed. This is not acceptable, since for example a cost minimal
solution could be eliminated.

The effect of removing is demonstrated on the following example. Consider
the quality ratings for the three optimisation criteria busload qbusload, energy
consumption qenergy, and costs qcosts, which are all subject to minimisation. The
current archive contains seven non-dominated solutions, which are all feasible,
and the archive size N is six. Figure 6.2 shows the values of qbusload, qenergy,
and qcosts, for these seven solutions. Now, one individual has to be chosen for
truncation. The three interesting solutions are marked with s1, s2, and s3. The
quality rating for energy consumption is slightly falling from the origin while
moving to higher values in the objectives costs and busload. The solution s1 is
not dominating s2 because it is worse in the objective energy consumption.

The original truncation operator Torig chooses solutions with the shortest dis-
tance to the first neighbour. This results in solutions s1 and s2. The solution
s1 has the shortest distance to the second-nearest neighbour and the truncation
operator chooses it for removal. Thus, the solution with the minimum costs is
removed from the archive. This behaviour is different to the statement from
Zitzler et al. [ZLT01] saying that the truncation operation prevents removal of
boundary solutions.

The operator Torig is modified in order to overcome the mentioned problem
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6.1. Optimisation of the Function Allocation with Evolutionary Algorithms

with Tbound (see Alg. 4). The procedure getNotOptimalSolutions(A) returns all so-
lutions from the archive that do not have the globally unique best value for at
least one objective. That way, these solutions are not candidates for removal any
more.

Algorithm 4: Tbound: Modified SPEA2 Truncation Operation not removing
boundary solutions
Input: An archive A with non-dominated solutions s
sT := getNotOptimalSolutions(A);1

k := 1; // Distance to the k-nearest neighbour2

while |sT| 6= 1 do3

sT := getSolsWithNearestNeighbour(sT, k, A) ;4

k := k + 1;5

end6

return sT; // exactly one solution to be truncated7

If Tbound is applied, it has to be ensured that the size of the archive |A| is larger
than the number of objectives. Otherwise, it can happen that each solution is
the unique global optimum for a different objective and no solutions remain for
removal. Thus, if a smaller archive size is used, Torig has to be applied. In the
example in Fig. 6.2, Tbound removes s2 instead of s1 first. Thus, the cost optimal
solution is not truncated any more.

6.1.4. Modifications for Constrained Optimisation Problems

The problem of function allocation has the specific feature that often a high
percentage of possible solutions are infeasible due to tight constraints. SPEA2

is not directly capable to deal with constrained problems. Several constraint
handling techniques are introduced in Sect. 2.1.4.

It is shown that from existing constraint handling techniques, the modification
of the domination relation is most promising. Especially, the domination opera-
tors developed by Deb dDeb(s1, s2) and Oyama dOyama(s1, s2) are interesting (see
Sect. 2.1.4). Deb does not describe how to measure the amount of constraint
violation. In order to test the amount of constraint violation, just the number of
constraint violations is used. A more detailed measure of the amount of con-
straint violation is very difficult, since different constraints would have to be
compared in that case.

Additionally to the modifications of the domination relation by Deb and
Oyama, in Sect. 2.1.4, another modification for solving constrained problems
with SPEA2 is proposed by Hubley et al. [HZR03]. With this modified domina-
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tion relation dHubley(s1, s2), each feasible solution dominates all infeasible solu-
tions. If the solutions s1 and s2 are both either feasible or infeasible, the original
domination relation dorig (see Def. 1) is applicable.

For optimisation problems with multiple constraints, another improvement to
dHubley(s1, s2) is proposed that is called new domination relation dnew(s1, s2).

Definition 5 A solution s1 is said to new-dominate dnew(s1, s2) the other solution s2,
if any of the following conditions is true:

• s1 has a smaller number of violated constraints than s2.

• Solutions s1 and s2 have the same number of constraint violations and s1 domi-
nates (d(s1, s2) according to Def. 1) s2.

Similar to dDeb, it regards only the number of constraint violation. It addi-
tionally considers the severity of the constraint violation by applying the origi-
nal domination operation, if two solutions have the same number of constraint
violations.

Another algorithm contrary to the adaptation of the domination relation is
leaving the domination relation untouched by applying dorig. Instead, the con-
straints are modelled as objectives and the truncation operator is modified.

It has been shown by Vieira et al. [VAKV02], that transforming the n con-
straints into n more objectives is a promising approach. Now, the problem from
(1.1) and (1.2) (see p. 11) can be reformulated as

minimise f = { f1(s), f2(s), ..., fm(s), g1(s), g2(s), ..., gn(s)}T (6.1)

It is important to note that if pure constraints are transformed into objectives,
they should return a constant minimal value, if the constraint is not violated.

As already explained in Chap. 3, a large number of objectives and constraints
exist for the presented application. A modified modelling approach is the basis
for the implementations of the different objectives and optimisation algorithms.
It is able to combine objectives and constraints. Some objectives are constraints
at the same time. An example is busload, which is object of minimisation, but
constrained at the same time.

All objectives with a constrained boundary value can be modelled as com-
bined constraints/objectives as already described in Sect. 4.2.5. The number of
constraints modelled as objectives can be reduced this way. More formalised,
the set of constraints g f , that are objectives at the same time can be determined
with

g f = {gj ∈ ( fi, gj)|∃ci, fi − ci = gj, fi ∈ f, gj ∈ g}, (6.2)
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with all ci constant values as boundaries and f and g according to (1.1) and (1.2).
Now, the optimisation problem can be re-formulated with fewer objectives as

minimise f = { f1(s), f2(s), ..., fm(s), g \ g f }
T. (6.3)

For application of this new objective modelling approach, a modified elitism
(or especially the truncation operator for SPEA2) is necessary in order to get
satisfying results. Horn et al. published the Niched Pareto Genetic Algorithm
(NPGA, [HNG94]). The elitism of NPGA has been modified by Vieira et al.
[VAKV02]. For SPEA2, these modifications are presented here.

In general, at the beginning of an evolutionary algorithm, only few solutions
in the archive are non-dominated. If all constraints are modelled as objectives,
constraint-violating solutions are not removed automatically. After a number of
generations, an increasing number of non-dominated solutions are found.

At this time, the truncation operator Tbound removes feasible solutions as well
as infeasible. If only small portions of the search space produce feasible solu-
tions, many feasible solutions are removed while keeping infeasible solutions.

In order to overcome this problem, a new truncation operator Tnew
is introduced in Alg. 5. The specific of the operator is the procedure
getSolutionsWithMostConstraintViolations(A) (see line 2). This procedure finds solu-
tions with the highest number of constraint violations. Only solutions found by
this procedure are candidates for removal.

Algorithm 5: Tnew: New SPEA2 Truncation Operation for Constraints Mod-
elled as Objectives
Input: An archive A with non-dominated solutions s
if constraint violating solutions found then1

sT := getSolutionsWithMostConstraintViolations(A);2

return selectionOperatorForInfeasibleSolutions(sT);3

else4

sT := getNotOptimalSolutions(A);5

k := 1; // Distance to the k-nearest neighbour6

while |sT| 6= 1 do7

sT := getSolsWithNearestNeighbour(sT, k, A);8

k := k + 1;9

end10

end11

return sT; // exactly one solution to be truncated12

In the next step (see line 3), exactly one solution is picked from these candi-
dates. It is the solution with the biggest distance to the nearest neighbour from
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Figure 6.3.: Influence of the constraint handling technique on the optimisation result
with 20 runs each

the set of feasible solutions. With other words, the infeasible solution with the
biggest distance to the feasible region is picked for removal first. If no feasible
solutions are found yet, Tbound is applied. For each objective, the range between
smallest and largest quality rating value of all feasible solutions in the current
Pareto set is normalised to 1 in order to measure the distance.

Similar to dnew, Tnew first removes solutions that violate the most constraints.
In contrast to dnew, Tnew first eliminates solutions from the set of most constraint
violating solutions that are far from the feasible region. SPEA2 with dnew tends
to remove solutions from this set in regions, which are crowded, but potentially
very near to the feasible region.

In order to decide, which constraint handling technique to apply, all four con-
straint handling techniques are compared. The optimisation problem presented
in Chap. 5 is taken as application example. The parameters are set to the values
as described before.

In Fig. 6.3, the results of the comparison are shown. In the comparison, the
hypervolume indicator IH as described in Sect. 2.1.5 is used. On the left-hand
side, the mean of all 20 test runs with each constraint handling technique over
the number of evaluations is displayed.

On the right-hand side, box plots of all Pareto sets of the last generation of
each of the 20 test runs are compared. The grey filled box contains the middle
fifty percent of all values. The horizontal bold line marks the median value. The
whiskers at the top and the bottom mark the worst/best-case values. Values are
called outliers and marked with a circle, if the distance of the value to the box is
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more than one and a half the height of the box (see for example Fig. 6.9, p. 108).
A more detailed explanation of box plots can be found in [MSVCS05].

It can be seen in Fig. 6.3 that—applied to the application from Chap. 5—all
constraint handling techniques seem to have similar performance in finding
good solution sets. Applying Tnew yields in the best results although the differ-
ence is not significant. The box plots show that both the median hypervolume
and the worst-case hypervolume are minimal in comparison to the other con-
straint handling techniques. For the further investigations, Tnew is used.

6.2. Optimisation of the Function Allocation with Ant
Colony Optimisation

State of the art ant colony optimisation algorithms have already been shown
in Sect. 2.1.3. This section presents adaptations of the known ACO algorithms
enabling them to solve the problem of function allocation in vehicle networks.
This section is based on the work of Bickel [Bic06].

6.2.1. Problem Specific Pheromone Information

The first step during the adaptation of ACO to the function allocation problem
is finding a suitable definition of the pheromone information. Especially, the
interpretation of the pheromone values is important. Applied to the travelling
salesman problem, the pheromone information represents the probability for
choosing the next city. A first, naiv approach for the function allocation domain
is the usage of a 2-dimensional pheromone matrix. The columns of the matrix
represent the components and the rows the ECUs. The pheromone values τc,e
in the matrix represent the probability that a component c is allocated to the
according the ECU e.

This approach has a major drawback. It is normal for multi-objective prob-
lems, that there are several optimal solutions in the Pareto front. During the con-
struction of solutions by the ants, only the information within the pheromone
matrix is used. Therefore, the pheromone matrix must represent the past ant
generations. The proposed naiv approach can only ensure this for a single so-
lution in a proper way. If there are several solutions, the values kept in the
naiv pheromone matrix just represent the number of solutions with a specific
component allocated to a specific ECU. It does not store which combinations of
component allocations lead to good solutions.

In order to improve this naiv approach, beside the pheromone matrix, a cor-
relation matrix is introduced. The correlation matrix is also 2-dimensional, but
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c1 c2 c3

e1 τc1,e1 τc2,e1 τc3,e1

e2 τc1,e2 τc2,e2 τc3,e2

e3 τc1,e3 τc2,e3 τc3,e3

e4 τc1,e4 τc2,e4 τc3,e4

c1 c2 c3

c1 γc1,c1 γc2,c1 γc3,c1

c2 γc1,c2 γc2,c2 γc3,c2

c3 γc1,c2 γc2,c3 γc3,c3

Figure 6.4.: Example for pheromone matrix (left) and correlation matrix (right) for three
components and four ECUs

contains all components over all components. The correlation values γc1,c2 rep-
resent the probability that two specific components are allocated together onto
the same ECU. Figure 6.4 shows an example of the pheromone and the cor-
relation matrices for three components and four ECUs. Redundant values are
printed in grey.

The probability pc,e for choosing a certain ECU e as allocation target for a
component c, can be determined with

pc,e =

τc,e ∏
∀γ∈γ ′

γ

∑
∀e

τc,e ∏
∀γ∈γ ′

γ
(6.4)

where γ
′ contains all γc1,c2 where c1 = c and c2 is already allocated on e. In

contrast to γ, which is containing all γ, γ
′ only contains the γ according to the

components that are already allocated on the ECU.
Another proposal from Dorigo and Gambardella [DG97] improves the ex-

ploitation at the expense of exploration for the travelling salesman problem. It
is applied as well in order to further improve the ACO algorithm. With a para-
metrisable probability q, the next city is chosen according to the highest product
τα

ijη
β
ij of all neighbour cities. In this application, the ECU e, chosen for allocation

of component c, is determined with

e =







max
∀e

τc,e ∏
∀γ∈γ ′

γ , if q ≤ pERP

ε , otherwise
, (6.5)

where pERP is an exploitation random parameter in the range [0, 1], q a random
number in [0, 1], and ε a random ECU selected according to the distribution
given in (6.4). With a probability of pERP, this algorithm chooses the currently
best known ECU without considering the other paths.
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Figure 6.5.: Hierarchy of the different groups of ants

6.2.2. Usage of Multiple Colonies

The function allocation problem is a multi-objective optimisation problem. In
Sect. 2.1.3, methods for handling multiple objectives in ACO are presented. The
algorithm shown here is based on the work of Iredi et al. [IMM01]. Several
colonies are created, but not necessarily one for each objective. The number
of objectives is parameterised with the parameter number of colonies per objective
pNCPO. Additionally, a parameter called sub population size factor pSPF is involved
for configuring the number of solutions in each sub population as multiple of
the number of objectives.

Figure 6.5 shows the hierarchy of different groups of ants. The ant itself
has the lowest rank. Its task is to generate a complete solution. Using the
pheromone and correlation matrices, it allocates each component to a specific
ECU. The ant colony is the next group of ants. It controls the individual ants and
administrates the pheromone and correlation values. At the highest level, the
ant population can be found. It collects the generated solutions, evaluates and
compares them, and initiates the update of the matrices. The ant population
stores the best solutions in a global solution set and provides them to the colonies
for the matrix update. The definition of what the best solutions are is given
below.
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6.2.3. Update Strategies and Constraint Handling

This section shows strategies for updating the pheromone and correlation ma-
trices. The first performed step is called evaporation. The evaporation reduces
the pheromone and correlation values by a certain percentage. The according
parameters are called pheromone evaporation rate pPER and correlation evaporation
rate pCER. Applying these parameters, (2.4) can be rewritten as

τc,e(t + 1) = (1 − pPER)τc,e(t) + ∆τc,e(t, t + 1) (6.6)

and

γc1,c2(t + 1) = (1 − pCER)γc1,c2(t) + ∆γc1,c2(t, t + 1). (6.7)

In the matrices, the information of the past generations are stored and passed
to the following generations. Only the best solutions update the matrices and
are used for the determination of the values ∆τc,e(t, t + 1) and ∆γc1,c2(t, t + 1)
as described later. Within the travelling salesman problem, the best solution is
the one with the shortest way. The function allocation problem includes sev-
eral objectives and can involve several best solutions. As already described in
Sect. 2.1.1, the non-dominated set or Pareto front is an analogue to the best so-
lution for multi-objective optimisation problems.

The management of the global solution set (see Fig. 6.5) is a task similar to the
management of the archive within SPEA2 as already shown in Sect. 2.1.2. In this
work, the method from SPEA2 is transferred for ACO. Similarly, a parameter
population size factor pPSF denotes the number of solutions in the global solution
set as factor to be multiplied with the number of objectives.

For the update of the pheromone and correlation matrices, this global solution
set sg as well as the best ants (feasible sf and non-dominated sn solutions) from
the own ant colony are included. As shown in the overview in Fig. 6.6, the
solutions from the three sets global solution set, local feasible solutions, and
local non-dominated solutions update the matrices with the update parameters
update factor global solution set pUGS, update factor local feasible solutions pULF, and
update factor local non-dominated solutions pULN. The values ∆τc,e(t, t + 1) and
∆γc1,c2(t, t + 1) in (6.6) and (6.7) are determined at any time with

∆τc,e = pUGSp(c
asg
→ e, sg) + pULFp(c

asg
→ e, sf) + pULNp(c

asg
→ e, sn) (6.8)

and

∆γc1,c2 = pUGSp(c1, c2, sg) + pULFp(c1, c2, sf) + pULNp(c1, c2, sn), (6.9)
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Figure 6.6.: Ant groups updating the pheromone and correlation matrices

where p(c
asg
→ e, s) denotes the percentage of solutions in the solution set s,

where c is allocated to e and p(c1, c2, s) the percentage of solutions, where c1
and c2 are allocated to the same ECU. A colony only considers those solutions
from the global set that are generated by their own previously. This is called
update-by-origin method.

The last important decision is the usage of the update-by-step algorithm. The
update-by-step algorithm decreases the value in the matrices after each allocated
component. This way, the following ants will less likely follow the same path.
The according values in the pheromone and correlation matrices are multiplied
with a parameter called factor for update by step pFUP.

6.3. Adjustment of the Optimisation Parameters

Evolutionary algorithms and ant colony optimisation have been examined for
solving the function allocation problem in the previous sections. Several para-
meters are involved in these algorithms. There are two different possibilities
for setting the parameters: Static values can be determined or the parameters
can be adjusted dynamically during the optimisation run. A survey of methods
controlling parameters dynamically can be found in [EHM99]. Static methods
allow a better insight in the algorithms. Thus, in order to compare evolution-
ary algorithms and ant colony optimisation, fixed values are used in this work.
However, dynamic parameter control can additionally be applied at any time.

So far, in this work the parameters are fixed to values obtained from the lit-
erature or experiments. However, the parameters have potentially big influence
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on each other and the optimisation result. That means, changing one parameter
might only yield in a good optimisation result, if another parameter is adjusted
as well. In this section, a method using orthogonal arrays is introduced, which
is applied for finding the optimal combination of parameter settings.

6.3.1. Orthogonal Arrays

Design of experiments is a general term for methods reducing the number of
necessary experiments for the determination of a good parameter set in any
kind of process or problem. One main property of these methods is the fact
that not every parameter is optimised singularly. Rather, all parameters are
tested simultaneously in experiments. One possible method for the design of
these experiments is the application of Orthogonal Arrays (OA). Taguchi applied
OAs in his method called robust design [Tag86, UD91], where OAs describe the
experiments to be performed.

An orthogonal array L(n, l) is a matrix with one out of a limited number
of so-called levels l in each field. In this work, only orthogonal arrays with a
strength of 2 are used, since they hold a smaller number of rows. For orthog-
onal arrays with a strength of 2, all combinations of 2 columns have the same
property: All possible combinations of levels occur in these columns—and they
occur with the same frequency. The variable n denotes the number of columns
of the orthogonal array.

There are methods for constructing orthogonal arrays for example by trans-
forming so-called latin squares. Additionally, there exist methods constructing
near-orthogonal arrays [Ngu96]. For the application in this work, a library is
used that can be found in [Slo06]. Table 6.1 shows an example for an orthogonal
array L(4, 3) with 4 columns, 3 levels (0, 1, and 2), and a strength of 2. For
the application to the determination of optimisation parameters, each column
is used for another parameter and each level represents a parameter setting for
the specific parameter.

6.3.2. Determination of the Parameters for Evolutionary Algorithms

The described orthogonal array method is applied to the determination of the
parameters of the evolutionary algorithm. Several parameters have been intro-
duced in Sect. 6.1. For optimising them with an orthogonal array, several levels
are assigned to all of them as shown in Tab. 6.2. For the parameters pPSF, pMR,
pMMR, and pCR, values that make sense are guessed in a first step.

In the next step, a suitable orthogonal array is determined. A suitable or-
thogonal array L(6, 5) from [Slo06] includes 25 different experiments. It can be
found in the appendix in Tab. B.1. The last two columns are not used for this
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Table 6.1.: Orthogonal Array L(4, 3) [Slo06]

0 0 0 0

0 1 1 2

0 2 2 1

1 0 1 1

1 1 2 0

1 2 0 2

2 0 2 2

2 1 0 1

2 2 1 0

Table 6.2.: Assignment of levels to concrete parameter values for EA

level pPSF pMR pMMR pCR

0 2 0.2 0.00 0.01

1 3 0.5 0.25 0.05

2 4 1.0 0.50 0.10

3 5 1.5 0.75 0.25

4 6 2.0 1.00 0.50

parameter determination and removed resulting in the L(4, 5) OA applied in
Tab. 6.3. For each experiment, 25 test runs are performed in order to be able
to draw statistically reliable conclusions. The population is reduced to a size
of 12 using the truncation operator before calculating the hypervolume indica-
tor. The population size is exactly 12 if the parameter pPSF is set to the smallest
value (pPSF = 2 according to Tab. 6.2). Thus, the positive effect of a Pareto front
containing more solutions is compensated.

Table 6.3 shows a summary of the results. On the top part of the table, the
mean values (avg. IH) of all 20 test runs are denoted beside the according exper-
iments. The optimisation is stopped after 5000 evaluations in each test run. On
the lower part of the table, the mean values of all avg. IH are shown. For each
level, only the avg. IH’s are considered that are determined in an experiment
with the according level setting of the parameter. The lowest value for each
parameter marks the level to choose for an optimal performance. For example,
the value 0.5696 for level 0 and pPSF is determined by averaging the avg. IH’s of
experiment 0. . . 5. A graphical representation for easier orientation is shown in
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Table 6.3.: Determination of the parameters of evolutionary algorithms using an or-
thogonal array L(4, 5) with 20 runs per experiment

experiment # pPSF pMR pMMR pCR avg. IH

0 0 0 0 0 0.5412

1 0 1 2 4 0.5458

2 0 2 3 1 0.5747
...

...
...

...
...

...
22 4 2 4 0 0.6130

23 4 3 2 1 0.6125

24 4 4 0 4 0.6255

level pPSF pMR pMMR pCR

0 0.5696 0.5437 0.5669 0.5766

1 0.5709 0.5675 0.5427 0.5731

2 0.5650 0.5616 0.5624 0.5623

3 0.5554 0.5844 0.5731 0.5672

4 0.5948 0.5985 0.6106 0.5765

Fig. 6.7.
With the orthogonal array method, the following parameter settings can be

determined: pPSF = 5, pMR = 0.2, pMMR = 0.25, pCR = 0.1. In order to ver-
ify the results, another experiment with the optimal parameter set is executed.
The mean value of the hypervolume indicator of 100 test runs is 0.5132.3 As
expected, this value is noticeable better than all mean values shown in Fig. 6.7.

3A number of 100 test runs is performed, since every value in Fig. 6.7 is the mean value of 100

single runs as well.
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Figure 6.7.: Influence of the different parameters on the performance of the EA
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Table 6.4.: Assignment of levels to concrete parameter values for ACO (first run)

level pERP pNCPO pSPF pPER pCER pPSF pUGS pULN pULF pFUP

0 0.1 0.33 2 0.01 0.01 2 0.001 0.001 0.001 0.90

1 0.3 0.66 4 0.05 0.05 4 0.005 0.005 0.005 0.95

2 0.5 1.00 6 0.10 0.10 6 0.010 0.010 0.010 1.00

Table 6.5.: Mean values of all experiments for each level for ACO with twelve test runs
per experiments (first run)

level pERP pNCPO pSPF pPER pCER pPSF pUGS pULN pULF pFUP

0 0.492 0.542 0.549 0.566 0.632 0.494 0.562 0.515 0.511 0.496

1 0.534 0.505 0.521 0.514 0.505 0.527 0.516 0.518 0.597 0.604
2 0.585 0.564 0.541 0.531 0.475 0.590 0.534 0.578 0.503 0.511

This demonstrates the improvement of the EA due to the optimised parameters.
Another interesting point is the fact that the mutation rate is low in compar-

ison to the results obtained by Laumanns et al. in [LZT01]. The explanation
lies in the different measurement method. In this work, the number of objective
evaluations instead of the number of generations is consulted for measurement.
Applying low mutation rates, there are a number of solutions not changed at all
inducing the mentioned difference.

6.3.3. Determination of the Parameters for Ant Colony Optimisation

Similarly to the EA, this section explains the determination of the parameters for
the ant colony optimisation algorithm. The first step is the selection of a suitable
orthogonal array. Totally, there are ten parameters to be configured. In order to
keep the number of necessary experiments low, for ACO only three levels are
chosen. An according orthogonal array L(13, 3) with 27 experiments is shown
in the appendix in Tab. B.2. The last three columns are ignored, since only ten
parameters are optimised. The parameters and proposals for the levels for the
first run are shown in Tab. 6.4. Table 6.5 shows the results of twelve runs for each
experiment. Thus, each value in Tab. 6.5 is the mean value of 27/3 × 12 = 108
single runs.

The parameter pCER has the main influence on the optimisation result since
it shows both the lowest and highest average hypervolume indicator value. In
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Table 6.6.: Assignment of levels to concrete parameter values for ACO (second run)

level pERP pNCPO pSPF pPER pCER pPSF pUGS pULN pULF pFUP

0 0.05 0.50 3 0.03 0.08 1 0.003 0.0005 0.001 0.90

1 0.10 0.66 4 0.05 0.12 2 0.005 0.0010 0.005 0.95

2 0.15 0.83 5 0.07 0.16 4 0.007 0.0020 0.010 1.00

Table 6.7.: Mean values of all experiments for each level for ACO with twelve test runs
per experiments (second run)

level pERP pNCPO pSPF pPER pCER pPSF pUGS pULN pULF pFUP

0 0.477 0.465 0.478 0.486 0.486 0.479 0.486 0.486 0.480 0.475

1 0.484 0.477 0.477 0.481 0.475 0.480 0.483 0.484 0.484 0.484
2 0.479 0.498 0.485 0.472 0.478 0.481 0.471 0.469 0.475 0.480

the second iteration, this parameter is adjusted as shown in Tab. 6.6. The ranges
of the most of the other parameters are modified as well in order to approach
the optimal settings. The values gathered with the second run can be found in
Tab. 6.7. According to these results, the optimal parameters are marked bold in
the table. The mean value of 100 runs with these parameter settings is 0.4575.
This value is lower than all values in Tab. 6.7. The parameter pPSF does not seem
to have noticeable influence since the distance between the values is very small.
It is set to pPSF = 4 contrary to Tab. 6.7, which is indicating a value of pPSF = 1.
The other parameters are set to pERP = 0.05, pNCPO = 0.5, pSPF = 4, pPER = 0.07,
pCER = 0.12, pUGS = 0.007, pULN = 0.002, pULF = 0.01, and pFUP = 0.90.

In this context, another idea is tested. Some colonies might drift in regions
where no or only few good solutions are found at all. An extension to the
classical update-by-origin approach (see Sect. 6.2.3) is introduced here in order to
overcome this drawback. In the classical approach, each solution in the Pareto
front stores a reference to the colony from which it origins. In the new approach,
this reference is re-linked. In the first step, the solutions are sorted in stacks
according to their origin colonies. As long as the sizes of the largest and the
smallest stack differ more the two, one solution from the largest stack is moved
to the smallest stack by re-linking the reference to the origin colony. Figure 6.8
shows a comparison of the classical and the equalised approach. Beside two
outliers, the equalised approach performs better. From this point, the equalised
approach is applied.
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6.4. Summary

In this section, the results of this chapter are summarised. First, a comparison of
evolutionary algorithm and ant colony optimisation is performed. Furthermore,
an analysis of the obtained solutions is performed. The solutions are compared
to the ones obtained in Sect. 5.3.

6.4.1. Comparison of Evolutionary Algorithm and Ant Colony
Optimisation

The evolutionary algorithm and ant colony optimisation are compared in
Fig. 6.9. Twenty test runs are performed for each optimisation algorithm. The
parameters are set according to optima found in Sect. 6.3.

It can be seen that the ACO algorithm is faster in finding the good solution
sets at the beginning of the runs. After a while, almost no better solutions are
found by the ACO algorithm anymore. While the EA is slow in comparison
to the ACO at the beginning, it is continuously improving in later phases. The
solutions obtained at the end have very similar hypervolume values for both
approaches. There is no noticeable difference in the quality of the obtained
solution sets.

Concluding, at the moment the ACO is preferred instead of the EA, due to
its better performance at the beginning of the optimisation runs. There seems
to be further potential in the development of the ACO and the ideas provided
in this work might help future researchers for developing ACOs with an even
better performance.
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6.4.2. Analysis of Obtained Solutions

In order to illustrate the benefit of the optimisation for an OEM, the results
are compared against the solutions obtained by existing methods in Sect. 5.3.
Only two of the four dimensions—busload and costs—are displayed in Fig. 6.10.
Three Pareto sets are shown: The results of the 24 hour random search (see
Tab. 5.3), the manual optimisation, and an EA run with a hypervolume of IH ≈
0.39. It is interesting that an EA run takes only approximately 10 minutes on
the same computer. The solutions determined by the optimisation dominate
all solutions determined in Chap. 5. The solutions determined by the random
search are much worse than the optimised ones.

6.4.3. Conclusion

In this chapter, two different optimisation algorithms have been developed for
solving the problem of function allocation in the automotive domain. Several
modifications to existing EAs are proposed. Furthermore, a new ACO algorithm
is presented outperforming the EA. For a quite complex optimisation problem
and for both algorithms, the optimal parameters are determined applying or-
thogonal arrays. Thus, for optimisation similar or easier than the application
example, it can be concluded that the method with the proposed parameters is
sufficient to produce a set of architecture proposals.
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7. Optimisation of Variants of Control
Units

In the last chapter, it has been shown how a set of optima for the allocation of
components to ECUs—the Pareto front—can be found. This is called the outer
optimisation (see also Sect. 4.2.8). In this chapter, an inner optimisation is intro-
duced. An inner optimisation is an optimisation that has to be performed in
order to calculate the quality rating for a solution proposed by the outer opti-
misation. Variant optimisation belongs to the objective costs, which is already
described in Sect. 3.5. It can often not be performed together with the outer
optimisation, due to the complexity of this inner optimisation problem. Thus,
it is done after the outer optimisation or together with the last generations of
the outer optimisation. Variant optimisation is explained in this own chapter be-
cause the results that can be gathered are promising on their own. The work pre-
sented in this chapter is based on the work of Kollert [HKKK05, HK05, Kol05].

As already explained in Sect. 1, the number of functions in modern cars is
rising. There is a trend to provide increasingly personalised cars to the cus-
tomer. This manifests not only in a growing number of new derivatives of cars.
Additionally, a rising amount of extra equipment is offered to the customer in
arbitrary combinations.

The number of new ECUs is not growing with the same speed as the number
of new functions. There is even a trend to reduce the number of ECUs due
to costs and complexity. The rising performance of micro-controllers allows
the integration of an increasing number of functions together into single ECUs.
Therefore, an increasing number of functions on singles ECUs can be ordered
as optional equipment by the customer. In order to reduce costs, variants of
the same ECUs are differing in hardware and software. Variants are created for
instance by not populating sections of the circuit board. A variant can only save
a share of the costs of the whole component. Component costs can optionally
include proportionate values for circuit board and micro-controller resource.
These cannot be saved by not populating sections of the circuit board.

Haubelt et al. [HTRE02] and Richter et al. [RZE+99] describe a represen-
tation of function variants. Their representation enables to describe variants
differing in the selection of components and in the function networks for sup-
porting different products. Thereby, a focus is on the verification of functional
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correctness. In this work, an approach is shown considering customer orders
and hardware mounting options of the ECU.

Each additional ECU variant causes expenses for logistics and development.
Therefore, a cost optimal and preferably low number has to be found. Today,
the process for the determination of variants is not automated. Non-technical
dependencies like packages of equipment or commonly ordered combinations
of equipment can only partially taken into account.

This chapter describes how the cost-optimal variants of an ECU can be de-
termined. In Sect. 7.1, the problem is described more in detail. A mathematical
problem description is presented in Sect. 7.2, before the transformation of the
variant combination problem into a warehouse location problem is shown (see
Sect. 7.3). Section 7.4 introduces an approach for reducing the problem com-
plexity. Algorithms for solving the variant combination problem are presented
in Sect. 7.5. Finally, the cost reduction potential of the variant optimisation is
summarised in Sect. 7.6.

7.1. Description of the Variant Combination Problem

This section gives an overview on the Variant Combination Problem (VCP). The
goal is to determine the average ECU costs ce originally defined in (3.1), see p. 40,
under consideration of ECU variants. First, behaviour of customers is described
by features. An extension of the definition of components allows describing the
technical requirements of ECU variants. Sets of these variants are solutions for
the VCP. During this section, it is explained how the average costs for the OEM
can be calculated. The terms used in this section are based on the database
model provided in Sect. 3.5.

7.1.1. Consideration of Customer Behaviour

The electronic system in a vehicle has to implement several features F based
on the customer behaviour. It can be determined, which set of ECU features Fe is
relevant for an ECU e using the database model shown in Fig. 3.6. It is the subset
of all features that influence the currently considered ECU. Thereby, the set of
ECU features for a specific ECU is dependent on the allocated components.
The relation between features and components will be described more in detail
below.

The customer decides which combination of features his car should cover—
the configuration of his vehicle. For each ECU, configurations can be aggregated
to ECU-specific vehicle partitions v. They influence the components that each
ECU has to implement. The according subset of features Fe,v ⊆ Fe for each
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Table 7.1.: Example for vehicle partitions, number of cars per vehicle partition, and
feature combinations

vehicle partition v nv feature combination F1 F2 F3 F4 F5

v1 20,000 Fe1,v1 2 2 4 2 4

v2 5,000 Fe1,v2 4 4 4 2 4

v3 15,000 Fe1,v3 2 2 2 2 4

v4 10,000 Fe1,v4 2 2 2 4 2

v5 10,000 Fe1,v5 2 4 4 2 4

vehicle partition and per ECU is called feature combination Fe,v. Cars of a vehicle
partition with a certain subset of features are ordered in arbitrary numbers—the
number of cars per vehicle partition nv.

In order to illustrate the various variables in this chapter, an example is pre-
sented. In the example, the ECU e1 is optimised. The set of ECU features
contains five features F1, . . . , F5. Table 7.1 shows five different vehicle partitions
v1, . . . , v5. For each vehicle partition, a different feature combination defined.
For example, 20,000 customers order a car with the options F3 and F5.

The determination of order forecasts for feature combinations is a non-trivial
process. The proposed concept of vehicle partitions allows using past customer
orders as input for creating these order forecasts. Additionally, marketing in-
formation is necessary for considering new features and the according future
customer behaviour.

7.1.2. Involving Components

Until now, only the view of customers is taken into consideration. Contrary, in a
technical view, it is spoken of components. All components allocated to an ECU
are in the set of ECU-allocated components ce. The definition of the component
costs is extended for an optimisation of variants. In Sect. 3.5.1, internal and ex-
ternal component costs (cint

c and cext
c ) are defined to do this. In this chapter, only

internal component costs cint
c are considered. Furthermore, only a share of these

costs is cost saving potential, since it is not necessary to consider proportionate
component costs like for example circuit board or micro-controller resources.
Thus, only the VO-reducible component costs c

int,VO
c , which can be removed in

variants of an ECU, are considered. Concluding, the not-VO-reducible component
costs c

int,nVO
c are defined with c

int,nVO
c = cint

c − c
int,VO
c . Components that are not

optional but mandatory are completely accounted in c
int,nVO
c . Since they have to

be in all variants anyway, they are not affected by the variant optimisation.
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Table 7.2.: Example for components and their costs

component c c
int,VO
c c

int,nVO
c cint

c cext
c

C C C C

c1 2.80 + 0.40 = 3.20 0.00

c2 2.70 + 0.20 = 2.90 0.00

c3 3.50 + 0.30 = 3.80 0.00

allocated to

F1 ∀F ∈ Fe1

∀c ∈ ce1

F5

e1

c3c2c1

F4F3F2

needs

Figure 7.1.: Example for the relation between features and components

The example introduced above is extended with three components c1, c2, and
c3. Their according internal and external component costs are shown in Tab. 7.2
using the virtual cost unit C. External component costs are not relevant for
variant optimisation and not modelled in this example.

In the example, all components are allocated to the ECU e1. However, in which
variants of this ECU to put them? This question is related to features ordered
by customers. Each feature in Fe needs at least one component c. An example
for the possible relations of features and components is shown in Fig. 7.1. The
features F1 and F2 both need c1. The feature F4 needs c2 and c3. Similar to the
features, in the following, only optional components are considered, since the
optimisation result is not influenced by components that are necessary on each
variant of an ECU. For convenience, the word optional is left out in the future,
and it is just spoken of components and features.

Based on the relation between features and components of an ECU, it is possi-
ble to determine all components that are required to support the ordered feature
combination Fe,v of an ECU. This combination of components is called minimal
component combination cmin

e,v . All components in cmin
e,v are required in order to

support all ordered features in the vehicle partition v and the according feature
combination Fe,v.

Variants of ECUs are defined by a combination of components as well. They
are built into cars in order to satisfy the demand for features. Equivalent mini-
mal component combinations can be necessary for different vehicle partitions v
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Table 7.3.: Example of minimal component combinations their transformation to mini-
mal variants

cmin
e,v nv c1 c2 c3

cmin
e,v1

20,000 2 4 4

cmin
e,v2

5,000 4 4 4

cmin
e,v3

15,000 2 2 4

cmin
e,v4

10,000 2 4 4

cmin
e,v5

10,000 4 4 4

⇒

vmin nvmin c1 c2 c3

vmin
1 30,000 2 4 4

vmin
2 15,000 4 4 4

vmin
3 15,000 2 2 4

with a different feature combination. All equivalent minimal component combi-
nations are aggregated to so-called minimal variants vmin in a next step. Minimal
variants describe the minimum requirement for the ECU variant to be installed
in the car. The set of all minimal variants vmin contains all minimal variants de-
rived from all feature combinations. The predicted number of ordered minimal
variants nvmin represents the according aggregation of the number of cars per
vehicle partition nv.

On the left hand, Tab. 7.3 shows five minimal component combinations de-
rived from the feature combinations in Tab. 7.1 and the relation between features
and components in Fig. 7.1. These five minimal component combinations are ag-
gregated to three minimal variants on the right hand of Tab. 7.3. For example,
cmin

e,v2
and cmin

e,v5
are aggregated to vmin

2 .

7.1.3. ECU Variants

Similar to minimal variants described above, ECU variants v are sets of com-
ponents. ECU variants are actually being installed in ordered cars and thus
have to be a superset of the components in the minimal variant. This means
that the installed variant sometimes supports more components than required.
Therefore, it is required that these components in that ECU can be deactivated
without being visible to the customer.

It is shown how the costs of an ECU variant cv can be determined. These costs
are composed from basic VO ECU costs c

bas,VO
e and VO-reducible component

costs c
int,VO
c , as defined above, of all components that are in the current variant:

cv = cbas,VO
e + ∑

∀c∈v
cint,VO

c . (7.1)

The basic VO ECU costs c
bas,VO
e have to be taken into consideration for each

variant of the according ECU. The costs c
bas,VO
e are the basic costs cbas

e (see
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Sect. 3.5.1) of an ECU increased by the not-VO-reducible component costs. Thus,
the basic VO ECU costs c

bas,VO
e can be calculated with

cbas,VO
e = cbas

e + ∑
∀c∈ce

cint,nVO
c . (7.2)

In the example (see Tab. 7.2) and with cbas
e = 20 C, c

bas,VO
e can be determined

with c
bas,VO
e = 20.90 C.

7.1.4. Variant Combinations

Above, single ECU variants are accounted. Now, sets and combinations of these
variants are examined. One type of set of ECU variants is the so-called set of
possible variants v. This set contains all variants that make sense. In a trivial
case, it contains all variants that can be constructed using the given set of ECU-
allocated components ce. How to do this in detail and how to reduce the number
of possible variants, is shown in Sect. 7.4.

For each ECU, a set of ECU variants with limited size can be defined and
ordered at the supplier for manufacturing the ordered cars. This set is a subset
of the set of possible variants and called variant combination V. Each set V
is a solution—valid or invalid—of the VCP. A variant combination is a valid
solution of the VCP if for each minimal variant in vmin at least one ECU variant
can be found being a superset:

V valid: ∀vmin ∈ vmin ∃ v ∈ V|v ⊇ vmin (7.3)

Supposed, a solution V is valid, it is interesting to calculate the quality of this
variant combination, namely the costs. Besides the average hardware costs of
the variant combination, another cost factor is involved influencing the result:
In general, a rising number of variants causes rising so-called variant-handling
costs. For the sake of simplification, it is assumed that each additional variant
causes the same order-rate-independent handling costs per variant chand

e . These
costs for development, administration, and handling of additional variants can
be determined according to past values. This can be difficult, since various divi-
sions of a car manufacturer get in contact with ECUs. Thus, all these divisions
have to evaluate their costs caused by the variants.

The average ECU costs of a variant combination c
avg
e,V depend on the accounted

variant combination V. For each valid variant combination V, the corresponding
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0.70

c/C
29.90
29.23
28.53
27.80
27.13 chand

e · |V|

V∗

|V| = m87654321

ce,V∗

m

c
avg
e,V∗

m

Figure 7.2.: Average variant-combination-dependent costs on the number of variants

average ECU costs c
avg
e,V can be calculated using the costs of each contained ECU

variant cv and the according variant installation rate pi,v

c
avg
e,V = ∑

∀v∈V
cv pi,v. (7.4)

The variant installation rates pi,v depend on the customer orders. For each
minimal variant vmin ordered from customers, the cheapest variant v ∈ V that
supports all required functions is built in. The value of pi,v is defined by the
number of cars built using the variant v divided by the total number of cars.

For each valid variant combination, the average variant-combination-dependent
costs ce,V can be determined by summing up the average ECU costs, the variant
handling costs for the according number of variants, and the external compo-
nent costs similar to (3.1) with

ce,V = c
avg
e,V + chand

e |V| + ∑
∀c∈ce

cext
c po,c, (7.5)

For example if V = {v1, v2}, v1 = {c2, c3}, v2 = {c1, c2, c3}, and chand
e = 0.10 C,

it follows: cv1 = 20.90 C + 2.70 C + 3.50 C = 27.10 C and cv2 = 29.90 C. The
ECU variant v2 is installed in all 15,000 cars of vmin

2 —the cheaper ECU variant
v1 is sufficient in all 45,000 cars of vmin

1 and vmin
3 . This is resulting in variant

installation rates of pi,v1 = 75 % and pi,v2 = 25 %. Thus, the value of the average
ECU costs of V in the example is c

avg
e,V = 27.10 C · 75 % + 29.90 C · 25 % = 27.80 C.

With |V| = 2, this is resulting in ce,V = 27.80 C + 0.10 C · 2 = 28.00 C.
Usually, there is more than one valid variant combination that contains a de-

fined number of variants m. In Fig. 7.2, each X marks the costs c
avg
e,V for a variant

combination with |V| = m elements. The minimum of the costs with m ele-
ments belongs to the local optimal variant combination V∗

m with exactly |V∗
m| = m
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elements. In general, the more variants are managed, the lower the average
ECU costs of a variant combination c

avg
e,V , but the higher the variant handling

costs chand
e · |V|. Connecting the cost points of all local optimal variant combi-

nations V∗
m (m = 1, 2, . . . ), the curve c

avg
e,V∗

m
in Fig. 7.2 can be constructed. The

optimal variant combination V∗ is the V∗
m with the m where the resulting curve

ce,V∗

m
according to (7.5) has its minimum. Algorithms for determining V∗ are

presented in Sect. 7.5. If the optimal variant combination can be determined,
the average ECU costs ce are

ce = ce,V∗ . (7.6)

7.2. Mathematical Problem Description

This section provides a mathematical description of the variant combination
problem. In preparation of Sect. 7.3, where the VCP is transformed into a so-
called warehouse location problem, additional variables are introduced.

For a specific minimal variant vmin, only those ECU variants v containing at
least all components of vmin can be installed. For all these variants, the prod-
uct of their price cv and the order number nvmin of the minimal variant vmin

equals the so-called minimal-variant-to-ECU-variant costs relation cvmin,v. It is de-
fined between each minimal variant vmin and each possible variant v. It equals
the costs that arise if in all cars that require the minimal variant vmin, variant v
is installed. For all couples vmin − v, where v is not valid for fulfilling the re-
quirements of vmin, the corresponding costs relation cvmin,v is set to a high value
M. The high value ensures that the optimisation algorithm does not assign a
not allowed variant v to the minimal variant vmin. Thus, the costs relation cvmin,v
can be determined with:

cvmin,v =

{

nvmin · cv if vmin ⊆ v,
M else.

(7.7)

Furthermore, the variables yv and xvmin,v are introduced. The meaning of these
variables in a valid solution of the VCP is:

• yv = 1, if variant v belongs to the current variant combination, yv = 0
otherwise. The set y contains one yv for each ECU variant in the set of
possible variants v. The set y is equivalent to a variant combination V.

• xvmin,v: percentage of the orders nvmin that are satisfied by the installation
of v. This value is only continuous during the optimisation. The value of
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these variables must be xvmin = 100 % or xvmin = 0 % after the optimisation.
The set x contains all xvmin,v.

With these variables and identifiers, the VCP can be formulated as follows:

minimise F(x, y) = ∑
∀v∈v

∑
∀vmin∈vmin

cvmin,v · xvmin,v + ∑
∀v∈v

chand
e · yv (7.8)

with the constraints

xvmin,v ≤ yv ∀v and ∀vmin (7.9)

∑
∀v∈v

xvmin,v = 1 ∀vmin (7.10)

yv ∈ {0, 1} ∀v (7.11)

xvmin,v ≥ 0 ∀v and ∀vmin (7.12)

The sets x and y are chosen so that the value of ce,V according to (7.5) is min-
imised. The first summand in (7.8) reflects the average ECU costs of a variant
combination c

avg
e,V according to (7.4). The second summand reflects the variant

handling costs chand
e · |V|. All other elements of ce,V are not depending on the

chosen variant combination and no subject of minimisation.
The constraints (7.9) ensure that orders of minimal variants vmin are only

satisfied by ECU variants v that are elements of the variant combination V.
For each minimal variant, the corresponding constraint (7.10) guarantees that
all orders of this minimal variant are fulfilled. The ranges of the variables are
restricted by the constraints (7.11) and (7.12). The optimal variant combination
V∗ can be determined from the optimised y. It is the set of all ECU variants v,
where the according yv = 1:

V∗ = {v|v ∈ v, yv ∈ y, yv = 1} (7.13)

7.3. Variant Combination Problem as a Warehouse
Location Problem

The (uncapacitated, simple) Warehouse Location Problem (WLP, [DD96])1 is similar
to the presented VCP. In a WLP, customers with demands n j for a homogeneous
product are given. They are supplied from some warehouses, which are not es-
tablished yet. There exist some places where warehouses could be established.

1This problem is also called the uncapacitated facility location problem or Simple Plant Loca-
tion Problem (SPLP).
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Opening a warehouse at place i causes costs equal to cwh
i . The transportation

of one unit of the product from the possible place i of a warehouse to customer
j costs pij and the transportation of the whole demand n j costs cij = pij · nj.
The question is at what places warehouses should be opened and from which
opened warehouse, the customers should be delivered, so that the overall costs
are minimal. The variables xij and yi are introduced for supporting the optimi-
sation process. They are defined similarly to xvmin,v and yv in Sect. 7.2. A more
detailed summary of all variables can be found in Tab. 7.4.

According to Domschke and Drexl [DD96], the WLP can be formulated as

minimise F(x, y) = ∑
i

∑
j

cij · xij + ∑
i

cwh
i · yi (7.14)

with the constraints

xij ≤ yi ∀i and ∀j (7.15)

∑
∀i

xij = 1 ∀j (7.16)

yi ∈ {0, 1} ∀i (7.17)
xij ≥ 0 ∀i and ∀j (7.18)

The VCP can be seen as a WLP. Therefore, transformations according to
Tab. 7.4 have to be performed. Thus, both problems can be described mathe-
matically in the same way.

7.4. Reduction of the Complexity

In the example shown so far, only three components are involved. With three
components, the optimal solution can be determined even without computer
support. The complexity of the VCP grows very fast with the number of com-
ponents on the considered ECU.

For determining the complexity of the VCP, it is first shown how many com-
binations from a set can be formed of its elements. From set with n elements,
(n

n) different combinations of exactly n elements, ( n
n−1) combinations with n − 1

elements, ( n
n−2) combinations with n− 2 elements, and so on can be constructed.

According to the binomial theorem

n

∑
k=0

(
n
k

)

an−kbk = (a + b)n , a, b ∈ R, n ∈ N (7.19)
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Table 7.4.: Transformation of a VCP into a WLP

variant combination problem warehouse location problem

vmin minimal variant j customer

v ECU variant i possible warehouse location

yv equals one, if variant v be-
longs to the variant combina-
tion, zero else

yi equals one, if at location i a
warehouse has to established,
zero else

xvmin,v xvmin,v · 100 % of the orders of
component combination vmin

is satisfied by the installation
of variant v

xij xij · 100 % of the demand of the
customer j is satisfied by the
warehouse at the location i

cvmin,v costs if variant v is built in all
cars that require comp. combi-
nation vmin

cij costs if warehouse of location
i covers the whole demand of
customer j

chand
e costs for developing and han-

dling the additional variant v
(unlike WLP here independent
from v)

cwh
i costs for building and ad-

ministration of the additional
warehouse i

it is necessary, that

n

∑
k=0

(
n
k

)

=
n

∑
k=0

(
n
k

)

1n−k1k = (1 + 1)n = 2n. (7.20)

Therefore, from a set of n elements, in total, 2n different combination can
be formed. Given |ce| different components, a number of n = 2|ce| different
variants can be constructed. Thus, 2n = 22|ce | different variant combinations can
be found.

In a naiv approach, all thinkable variants are member of the so-called set of
possible variants v. For example, for an ECU with ten optional components,
210 = 1024 ECU variants are in the set of possible variants yielding in 2n =

2|v| = 2210
≈ 1.8 · 10308 variant combinations. It is possible to reduce the size of

the set of possible variants v. This can significantly reduce the problem size. It
is proposed to consider only variants that are equivalent to a minimal variant or
the union of two or more minimal variants. Other ECU variants make no sense.
They are either not valid for all minimal variants or another ECU variant can
be found that fulfils the requirements of exactly the same minimal variants at
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Table 7.5.: Example for the determination of the set of possible variants from a set of
minimal variants

all ∪ v′ c1 c2 c3 v

vmin
1 2 4 4 → v1

vmin
2 4 4 4 → v2

vmin
3 2 2 4 → v3

vmin
1 ∪ vmin

2 4 4 4 v2
vmin

2 ∪ vmin
3 4 4 4 v2

vmin
3 ∪ vmin

1 2 4 4 v1
vmin

1 ∪ vmin
2 ∪ vmin

3 4 4 4 v2

lower costs. The union of the power set P of all minimal variants defines the set
of possible variants. The power set is also called set of all subsets. For example,
with x = {1, 2, 3}, it follows P(x) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}, {1, 2, 3},
{}}. Formally, the set of possible variants v can be determined with

v =
{

v|v = ∪ v′, v′ ∈ P
(

vmin
)}

. (7.21)

Each raw ECU variant v′ is a set of minimal variants. The union of this set ∪ v′

gives the ECU variant v.
Without this reduction of complexity, for the example in Tab. 7.3 with three

components, the set of possible variants v contains a number of 23 = 8 vari-
ants. Applying (7.21) yields in three variants. Table 7.5 shows the power set of
all minimal variants and the according variants for this example. Redundant
variants are printed in grey.

Applied to larger problem instances, this reduction of complexity helps to re-
duce the problem size significantly. The number of variant combinations that
have to be tested if applying an exhaustive search in order to find the optimal
variant combination V∗ is reduced. Still, due to the huge number of possible
variant combinations, it is often not possible to calculate the corresponding aver-
age ECU costs of each combination. Therefore, efficient optimisation algorithms
are necessary that do not handle each variant combination separately.

7.5. Algorithms for Solving the Variant Combination
Problem

The warehouse location problem is already examined since more than three
decades [CDS02]. For the solution of the VCP respectively the WLP there are
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exact and heuristic algorithms. Since the VCP can be transformed into a WLP,
all algorithms for WLPs can be used for solving VCPs as well.

Several optimisation algorithms—originally developed for the WLP—have
been examined and applied to the VCP. Exact algorithms are mostly Branch
& Bound (B&B) algorithms. The B&B algorithm iterative fixes the problem vari-
ables. In the VCP, at each branching point, a yv ∈ y is set to 0 or 1. Estimations
for lower and upper bounds are determined considering the decisions already
made in the current branch. If an upper bound for a (partially) fixed set of prob-
lem variables can be found, no branch, where the lower bound is higher than
this upper bound, is interesting anymore. Thus, the number of paths through
the tree to be completely discovered can be reduced very fast.

A B&B method with usage of a simplex algorithm is presented by Domschke

and Drexl in [DD02]. It transforms the sub-problems in corresponding relaxed
linear problems and solves them optimal with the simplex algorithm. This gives
the lower bounds.

Another B&B algorithm is the so-called Erlenkotter algorithm. It has first been
introduced by Erlenkotter in [Erl78] and further improved by Körkel [Kör99].
In difference to the simplex algorithm, the sub-problems are not relaxed. Rather,
the original sub-problems are solved not optimal by heuristic algorithms. Sub-
sequently, these results are considered as lower bounds. The lower bound deter-
mined by the simplex algorithm is more accurate but the determination is more
complex. The computational effort of the simplex algorithm rises faster than
of the Erlenkotter algorithm. Thus, for bigger problem instances, the simplex
algorithm is much slower and it is not considered in the course of this section
anymore.

A further class of algorithms is heuristic. A new heuristic approach devel-
oped in the course of this work —the so-called merge algorithm—is introduced
here. The merge algorithm starts with a solution V containing all minimal vari-
ants (V := vmin). Since in real applications, often, a high number of different
minimal variants are ordered by customers, the size of V normally has to be re-
duced. Therefore, in each step, exactly two variants are merged. Merging means
that these two variants are replaced by a new variant, which is the superset of
the two replaced ones. At each step, all possible combinations of two variants
are tested. The combination of two variants with the lowest worsening of the
average ECU costs is chosen for merging. This method ensures that the solution
V is always valid. The algorithm stops, when no further improvement can be
reached anymore.

The merge algorithm forbids keeping solutions worse than the currently
known best solution. In order to leave local optima, it makes sense to ac-
cept worse solutions in some cases. Thus, Simulated Annealing (SA, [KGV83])
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Table 7.6.: Details of the test problems

test problem |ce| |vmin|/2|ce| type

TP1 8 0.150 random generated example
TP2 8 0.500 random generated example
TP3 9 0.150 random generated example
TP4 6 0.387 real application
TP5 10 0.419 real application

is analysed for usability as well. Simulated annealing works analogue to the
way in which a metal cools down into a crystalline structure of minimum en-
ergy. In each iteration, SA considers some neighbours of the current solution
V. Simulated annealing decides, whether to keep the current solution or one of
the new ones probabilistically. This decision is depending on a parameter called
temperature. The higher the temperature the more likely a solution worse than
the current one is chosen. The temperature is falling, until the system is frozen
and a good solution hopefully near or equal to the optimum has been found.
The application of SA to the VCP is explained in detail in [Kol05].

The different algorithms—Erlenkotter algorithm, merge algorithm, and SA—
are tested with five different Test Problems (TP). An overview is given in Tab. 7.6.
The first three test problems (TP1 – TP3) are generated randomly. First, a certain
number of components |ce| and a percentage of minimal variants in comparison
to the number of possible variants |vmin|/2|ce| is specified. The component costs
are varying between 1.5 C and 3.5 C. Second, the configurations of the mini-
mal variants are generated randomly so that the specifications are met. Test
problems TP4 and TP5 are two real applications of this method. The values
|vmin|/2|ce| show the complexity of these problems.

Measures of the execution time (see Tab. 7.7) and the quality of the results are
compared in Tab. 7.8. The tests have been performed on an Intel Pentium III 1000

with 512 MB RAM. It can be shown that for smaller problem sizes, SA is slower
than the Erlenkotter algorithm. Even for bigger problem sizes (10 components),
SA is not significantly faster than the Erlenkotter algorithm. This is probably
due to many local extremes of the solution space of a VCP. The neighbour
solutions of the few valid solutions are normally quite bad or invalid. It is
difficult to leave these local extremes with SA. The merge algorithm is normally
much faster than the Erlenkotter algorithm and the SA. Additionally, the quality
of results is better than SA. It is proposed to apply the Erlenkotter algorithm
as long as the time is sufficient to do so. The amount of necessary time in turn
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Table 7.7.: Time in seconds for calculating the solutions for five different test problems

algorithm test problem average

TP 1 TP 2 TP 3 TP 4 TP 5

s s s s s s

merge algorithm 0.15 0.41 0.24 0.61 3.67 1.02

SA 1.23 5.92 3.93 4.71 44.51 12.06

Erlenkotter algorithm 0.43 0.65 9.56 10.48 117.12 27.65

Table 7.8.: Difference of the solutions in comparison to the optimal one for five different
test problems

algorithm test problem average

TP 1 TP 2 TP 3 TP 4 TP 5

% % % % % %

merge algorithm 0.14 0.01 0.59 1.59 0.27 0.52

SA 0.40 0.01 2.57 1.58 0.51 1.014

Erlenkotter algorithm 0.00 0.00 0.00 0.00 0.00 0.00

depends on the available computing power. If the time is not sufficient, the
application of the merge algorithm is proposed.

7.6. Summary

In order to consider variants of ECUs, an extension to the objective costs from
Sect. 3.5 is proposed. Variant optimisation is a promising optimisation on its
own. Variant optimisation has been applied to a real ECU with 6 and 10 (op-
tional) components (TP4 and TP5). In comparison to a previously realised man-
ual variant determination, the introduced method for computer-aided optimi-
sation saved over 1e per car and optimised ECU under the condition that the
future orders exactly match the forecast. This method represents a big improve-
ment in comparison to the manual determination of the variants. It saves not
only costs but also supports the process of determining the variants of ECUs.
According to [Sch06], the Volkswagen group will produce over 5,000,000 in 2006.
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Thus, assumed that this method can be applied in a similar manner for only two
ECUs in each car of the Volkswagen group, savings of over 10 millione per year
can be expected.
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This chapter summarises the most important results of this thesis. It compares
the work to existing approaches. Furthermore, it gives an outlook on future
work that will help to further improve the system.

8.1. Summary

Several tasks were defined in the beginning of this work. These tasks have been
treated in the course of the work.

A number of objectives and constraints that can be influenced by the allocation
of functions have been characterised. For each objective, a formal description
shows how to calculate the according quality ratings. During the treatment of
the objectives, a database model has been developed for storing all information
necessary for the calculation of the quality ratings. A large portion of the data
is already spread in different databases of the car manufacturers. The collection
of this data and the calculation of quality ratings will improve the process of ar-
chitecture development significantly by showing drawbacks and disadvantages
of architecture proposals in early development phases.

After examining the objectives, an optimisation framework has been devel-
oped. This framework allows a flexible extension with arbitrary objectives and
arbitrary population based optimisation algorithms.

An application example has been introduced with a realistic complexity. Evo-
lutionary algorithms and ant colony optimisation have been investigated as pos-
sible candidates for the optimisation of the according function allocation. For
both algorithms, extensions have been proposed that enable applying them to
this problem type. In the performed tests, the ant colony optimisation algo-
rithm performed better than the modified evolutionary algorithm. The pro-
vided method enables not only to evaluate a given function allocation proposal
but also to propose new optimised ones.

In order to reduce the cost estimation of a given allocation further, the so-
called variant optimisation has been developed. It is shown how to determine
a combination of variants of one ECU differing in hardware options so that a
cost minimum is reached. Thereby, past customer orders and order forecasts
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are taken into consideration. It has been shown that a considerable amount of
money can be saved applying only this optimisation.

8.2. Comparison to Existing Approaches

This section summarises existing approaches and compares them with this
work. There are already approaches for the estimation of the quality ratings
for different objectives. Park et al. [PCCL94] and Kloske et al. [KS94] pub-
lished wiring harness optimisation methods. Different resources, like for ex-
ample pins, memory, and so on are handled by Blickle et al. [BTT98]. In this
work, an approach has been introduced allowing the consideration of arbitrary
objectives at the same time. Resources are modelled in a general way. To the
knowledge of the author, the objectives electrical energy consumption and sup-
plier complexity have not been handled before in the introduced way. If more
detailed quality ratings are needed the framework allows an inclusion at any
time.

Several general optimisation algorithms are able to consider multiple objec-
tives and combinatorial problems, like SPEA2, NSGA-II, and ACO. Existing
constraint handling methods can be used in combination with these algorithms.
It is not possible to apply these algorithms to arbitrary problems. There are spe-
cialised optimisation algorithms for solving the travelling salesman problem,
the warehouse location problem or the multiple knapsack problem with a good
performance. Additionally, in the area of hardware and software co-design,
work has been done on solving allocation problems. Its focus lies on real time
properties, communication issues, and task and bus schedules. To the knowl-
edge of the author, there is no specialised optimisation algorithm for solving
the function allocation problem in the form shown here. This work presents
a new problem representation enabling the application of general optimisation
algorithms to the special optimisation problem. Existing constraint handling
methods are combined with SPEA2 and an ACO algorithm. In the course of
this work, several new constraint handling techniques have been developed and
tested. Furthermore, some drawbacks of existing optimisation methods have
been fixed or improved. Orthogonal arrays were applied for the determination
of parameters of the optimisation algorithms.

Subsuming the above points, this work combines several fields of work that
have not yet been brought together before. Furthermore, a number of additional
parts have been developed. Since the amount of data—contained in several
databases at all parties in the automotive industry—rises, the results of this
work will get even more important in the future.
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8.3. Future Work

In the course of this work, it has been shown that the optimisation system can
improve the electronic architecture. The optimisation delivers architecture pro-
posals on even quite complex application problems. Nevertheless, there are
still open technical issues that would help to further increase the benefit of the
system:

• In the future, the number of safety relevant functions will probably further
increase. Thus, it is increasingly necessary to regard redundant functions
during the design of the electronic architecture. Future work must regard
this aspect as well.

• Currently, only the optimisation of the allocation of functions is supported.
In the future, it is planned to examine ways of how to support degrees of
freedom in the hardware as well. This increases as well the complexity as
the potential.

• All parameters of the optimisation algorithms are set statically. It is
planned to consider dynamically changing parameters as well in order
to further improve the performance of the optimisation algorithms.

• The influence of different application examples on the optimisation results
has to be examined.

• In the opinion of the author, there is potential for further development of
ACO. Currently, no heuristic information like in the existing approaches
is applied for determining the paths of the ants.

• The current system has no graphical user interface. Further work has to be
performed in order to make the system user-friendly even for non-experts
in optimisation and databases.

The items listed above are technical issues that are intended to further im-
prove the optimisation system. A main problem is still the gathering of the
input data for the optimisation. In the future, processes have to be installed that
motivate and support all necessary persons within the development process
during their design of the optimal electronic architecture for future vehicles.
Tailor-made solutions depending on the specific infrastructure of the OEM have
to be found. Existing databases have to be connected to the optimisation system
and extended for improving the support of the architecture design.

The sum of the open points shows that there is still a long way to go. This
work provides not only methods but also a vision. Nevertheless, the example of
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8. Conclusion

variant optimisation shows that it is not always necessary to complete the whole
task in one huge step in order to realise benefits. I hope that the whole vision
will come true step by step.
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A. Parameters of the Optimisation
Algorithms

This appendix summarises the parameters of the optimisation algorithms in
Cha. 6.

Table A.1.: Summary of parameters of evolutionary algorithms

parameter description

pPSF Population size factor. Defines a factor that is multiplied with the
number of objectives in order to determine the desired popula-
tion size.

pMR Normalised mutation rate. The probability pM that a mutation is
performed is depending on the normalised mutation rate and
the number of components |s| with pM = pMR/|s|.

pMMR Move mutation rate. In case that a mutation is applied to the cur-
rent component, this parameter denotes the probability, that the
move mutation is performed instead of the exchange mutation.

pCR Crossover rate. Denotes the probability that the assignment of a
component is crossed with the assignment of the same compo-
nent of another solution.
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A. Parameters of the Optimisation Algorithms

Table A.2.: Summary of parameters of ant colony optimisation

parameter description

pERP Exploitation random parameter. A parameter for configuring the
probability that the exploitation-supporting selecting mechanism
is applied in (6.5).

pNCPO Number of colonies per objective. This parameter is multiplied with
the number of objectives in order to determine the number of
colonies.

pSPF Sub population factor. This parameter is multiplied with the num-
ber of objectives in order to determine the number of solutions
within each sub population.

pPER Pheromone evaporation rate. Denotes the amount of evaporation in
the pheromone matrix.

pCER Correlation evaporation rate. Denotes the amount of evaporation in
the correlation matrix.

pPSF Population size factor. This parameter is multiplied with number
of objectives in order to determine the number of solutions in the
global solution set.

pUGS Update factor global solution set. Parameter for adjusting the influ-
ence of the global solution set on the update of the pheromone
and correlation matrices.

pULF Update factor local feasible solutions. Parameter for adjusting the
influence of the feasible solutions in the current colony on the
update of the pheromone and correlation matrices.

pULN Update factor local non-dominated solutions. Parameter for adjust-
ing the influence of the non-dominated solutions in the current
colony on the update of the pheromone and correlation matrices.

pFUP Factor for update by step. Multiplied with the values in the
pheromone and correlation matrices after each step of the ant in
order to reduce the probability for ant following the same path
twice.
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B. Orthogonal Arrays

This appendix lists the orthogonal arrays used in Sect. 6.3. Each column stands
for a specific parameter and each value for certain parameter setting. Each row
of the arrays is equivalent to an experiment that has to be conducted.

Table B.1.: Orthogonal Array L(6, 5) [Slo06]

0 0 0 0 0 0
0 1 2 4 3 2
0 2 3 1 4 3
0 3 4 2 1 4
0 4 1 3 2 1
1 0 4 4 2 3
1 1 0 1 1 1
1 2 2 3 0 4
1 3 1 0 4 2
1 4 3 2 3 0
2 0 1 1 3 4
2 1 4 3 4 0
2 2 0 2 2 2
2 3 3 4 0 1
2 4 2 0 1 3
3 0 2 2 4 1
3 1 3 0 2 4
3 2 1 4 1 0
3 3 0 3 3 3
3 4 4 1 0 2
4 0 3 3 1 2
4 1 1 2 0 3
4 2 4 0 3 1
4 3 2 1 2 0
4 4 0 4 4 4
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Table B.2.: Orthogonal Array L(13, 3) [Slo06]

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 2 2 0 1 2 1 0 0
2 0 2 2 2 1 1 0 2 1 2 0 0
0 1 0 1 1 1 2 2 0 1 2 1 0
1 1 1 2 2 0 1 2 1 0 0 1 0
2 1 2 0 0 2 0 2 2 2 1 1 0
0 2 0 2 2 2 1 1 0 2 1 2 0
1 2 1 0 0 1 0 1 1 1 2 2 0
2 2 2 1 1 0 2 1 2 0 0 2 0
0 0 1 0 1 1 1 2 2 0 1 2 1
1 0 2 1 2 0 0 2 0 2 2 2 1
2 0 0 2 0 2 2 2 1 1 0 2 1
0 1 1 1 2 2 0 1 2 1 0 0 1
1 1 2 2 0 1 2 1 0 0 1 0 1
2 1 0 0 1 0 1 1 1 2 2 0 1
0 2 1 2 0 0 2 0 2 2 2 1 1
1 2 2 0 1 2 1 0 0 1 0 1 1
2 2 0 1 2 1 0 0 1 0 1 1 1
0 0 2 0 2 2 2 1 1 0 2 1 2
1 0 0 1 0 1 1 1 2 2 0 1 2
2 0 1 2 1 0 0 1 0 1 1 1 2
0 1 2 1 0 0 1 0 1 1 1 2 2
1 1 0 2 1 2 0 0 2 0 2 2 2
2 1 1 0 2 1 2 0 0 2 0 2 2
0 2 2 2 1 1 0 2 1 2 0 0 2
1 2 0 0 2 0 2 2 2 1 1 0 2
2 2 1 1 0 2 1 2 0 0 2 0 2
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